$例1、已知函数f(3-2x)的对称中心为(4,2),求f(4x-1)的对称中心为:$
$对于\forall h\in R均有f[3-2(4+h)]+f[3-2(4-h)]=4\Rightarrow f(-5-2h)+f(-3+2h)=4$
$\Rightarrow f(x)关于(-5,2)对称;设f(4x-1)的对称中心为(a,b),f[4(a+x)-1]+f[4(a-x)-1]=2b $
$\Rightarrow \begin{cases} 2b=4\\ 4(a+x)-1+4(a-x)-1=-5\times 2\end{cases}\Rightarrow \begin{cases} a=-1\\b=2\end{cases}$


$例2、已知函数f(2x-1)关于x=2轴对称,求f(x+1)的对称轴:$
$例3、已知x\in \mathsf{R} ,y=3f(-2x+4)+1为奇函数,则函数y=2f(3x+1)+4的对称中心为$
$\because x=0,y=0\Rightarrow 3f(-2\cdot 0+4)+1=0\Rightarrow f(4)=-\cfrac{1}{3} $
$y=2f(4)+4=-\cfrac{1}{3} \times 2+4=\cfrac{10}{3} {\color{Red} \because } 3x+1=4\Rightarrow x=1$
$(1,\cfrac{10}{3} )$
数列题目66
${\color{Red} a_n=2n+3}{\color{Red}\qquad \therefore } \Rightarrow $
$b_n=\begin{cases} a_n-6=2n-3,\quad n为奇数时\\2a_n=4n+6,\qquad n为偶数时 \end{cases}$
$当n为奇数时,T_n=(-1+14)+(3+22)+(7+30)+\dots +(2n-7+4n+2)+2n-3$
$=\cfrac{\cfrac{n+1}{2}(-1+2n-3) }{2} +\cfrac{\cfrac{n-1}{2}(14+4n+2) }{2}=\cfrac{3n^2+5n-10}{2}$
$当n\gt 5时,T_n-S_n=\cfrac{3n^2+5n-10}{2}-(n^2+4n)= \cfrac{n^2-3n-10}{2}=\cfrac{(n-5)(n+2)}{2} \gt 0 $
$当n为偶数时,T_n=(-1+14)+(3+22)+(7+30)+\dots +(2n-5+4n+6)$
$=\cfrac{\cfrac{n}{2}(-1+2n-5) }{2} +\cfrac{\cfrac{n}{2}(14+4n+6) }{2}=\cfrac{3n^2+7n}{2}$
$当n\gt 5时,T_n-S_n=\cfrac{3n^2+7n}{2}-(n^2+4n)=\cfrac{n(n-1)}{2}\gt 0$

$例4、若函数f(x+2)为偶数,y=g(x+1)-5为奇数,且f(2-x)+g(x)=2,则f(2023)=$
$f(x)关于x=2对称,g(x)的对称中心为(1,5)\Rightarrow g(x)+g(2-x)=10$
${\color{Orange} \because \quad } f(2-x)+g(x)=2\Rightarrow f(x)+g(2-x)=2$

$例5、已知f(x)是二次函数,f(-2)=0,且有2x\le f(x)\le \cfrac{x^2+4}{2},则f(10)=$
$设f(x)=(x+2)(ax+b),y=2x与y=\cfrac{x^2+4}{2}相交于(2,4)$
${f}' (x)=ax+b+a(x+2),三个相交并相切于(2,4),\Rightarrow f(2)=4,{f}' (2)=2$
$2a+b=1,6a+b=2,a=0.25,b=0.5$
$例6、已知x^2+y^2=6,那么3x+4y的最大值是$
可用三角变换,也可构造向量,柯西不等式
$例7、若关于x的方程\cfrac{x}{e^x} +\cfrac{e^x}{x-e^x} +m=0 有三个不相等的实数解x_1,x_2,x_3,$
$且 x_1\lt 0\lt x_2\lt x_3,其中 m\in R,则$
$(\cfrac{x_1}{e^{x_1}}-1 )^2(\cfrac{x_2}{e^{x_2}}-1 )(\cfrac{x_3}{e^{x_3}}-1 )=(\qquad)$
$提示:\cfrac{x}{e^x}-1 +\cfrac{1}{\cfrac{x}{e^x}-1}+m+1=0$
$令f(x)=\cfrac{x}{e^x}-1 ,f(x)+\cfrac{1}{f(x)}+m+1=0$
$f(x)\le \cfrac{1}{e}-1,去分母\Rightarrow f^2(x) +(m+1)f(x)+1=0$
$换元令f(x)=t,t^2+(m+1)t+1=0,t_1+t_2=-m-1,t_1t_2=1$

$例8.\alpha ,\beta 为锐角,且\cos (\alpha +\beta )=\cfrac{\sin \alpha }{\sin \beta } ,则\tan \alpha的最大值(\quad)$
$A.\cfrac{\sqrt{2} }{4} \qquad B.\cfrac{\sqrt{3} }{3} \qquad C.1\qquad D.\sqrt{2} $
$要奔着用\tan \beta 来表示 \tan \alpha$
$\tan \alpha \cfrac{1}{\sin \beta } =\cos \beta -\tan \alpha \sin \beta \Rightarrow \tan \alpha =\cfrac{\sin \beta \cos \beta }{1+\sin^2 \beta }$


$例9.若x^2+y^2=1,则\cfrac{y-2}{x+1} 的最大值为(\quad -\cfrac{3}{4} \quad )$


$例10.已知单位向量\vec{e_1} 与\vec{e_2}的夹角为\alpha ,且\cos \alpha =\cfrac{1}{3}, $
$向量\vec{a}=3\vec{e_1}-2 \vec{e_2}与\vec{b} =3\vec{e_1}- \vec{e_2}的夹角为\beta ,则\cos \beta 为$


$例11.在\triangle ABC满足b-2a+4a\sin ^2\cfrac{A+B}{2} =0, 下列结论错误的是(\qquad)$
$A.角C是钝角 \qquad B. a^2+2b^2-c^2=0 \qquad C.\tan B的最小值为\cfrac{\sqrt{3} }{`3} \qquad D.3\tan A+\tan C=0$
$解:b-2a+4a\cos^2 \cfrac{A+B}{2}=0\Rightarrow b-2a+4a\cos^2\cfrac{C}{2}\Rightarrow \cos C=-\cfrac{b}{2a},A正确。$
$\cos C=-\cfrac{b}{2a}=\cfrac{a^2+b^2-c^2}{2ab}\Rightarrow -b^2=a^2+b^2-c^2,B正确。$
$\cfrac{\tan A}{\tan C}=\cfrac{\sin A \cos C}{\sin C \cos A}=\cfrac{a}{c}\cdot \cfrac{(a^2+b^2-c^2)\cdot 2bc}{2ab\cdot (b^2+c^2-a^2)}=\cfrac{-b^2}{3b^2}=-\cfrac{1}{3}\quad \therefore $ D is rihgt

$\tan B=-\cfrac{\tan A+\tan C}{1-\tan A\tan C}=-\cfrac{\tan A-3\tan A}{1-3\tan A\tan A}=\cfrac{2\tan A}{1+3\tan^2 A}=\cfrac{2}{\cfrac{1}{\tan A}+3\tan A}\le \cfrac{2}{2\sqrt{3}}$

$例12.已知实数x,y,z均小于1,且满足e^x-e^{\log_{2}{3} }=e\cdot (x-\log_{2}{3}),$
$e^y-e^{\log_{3}{5} }=e\cdot (y-\log_{3}{5}),e^z-e^{\log_{5}{8} }=e\cdot (z-\log_{5}{8}),则x,y,z的大小关系是:$
$解:{\color{Purple}  \Leftrightarrow e ^x-ex=e^{ \log_{2}{3}}-e\log_{2}{3} } $
$e ^y-ey=e^{ \log_{3}{5}}-e\log_{3}{5} ;$
$e ^z-ez=e^{ \log_{5}{8}}-e\log_{5}{8} ;$
$构造函数f(x)=e^t-et,t\in (-\infty,1)$
${\color{Red} \Rightarrow f(x)=f(\log_{2 }{3}); }$
${\color{Purple} \Rightarrow f(y)=f(\log_{3}{5}) }$
${\color{Red} \Rightarrow f(z)=f(\log_{5 }{8}); }$
$\because x,y,z\lt 1,而\log_{2}{3},\log_{3}{5} ,\log_{5}{8} \gt 1,$
$所以x\ne \log_{2}{3},y\ne \log_{3}{5} ,z\ne \log_{5}{8}$
${{\color{Red}\because \quad } \color{Green} \log_{2}{3}\gt\log_{3}{5} \gt \log_{5}{8},此处省去无数过程}$
$对f(x)容易得到它在x\lt 1时,单调递减,x\gt 1时单调递增。{\color{Red} \Rightarrow}x\lt y\lt z$
${\color{Red} \log_{2}{3}} =\log_{2}{\sqrt{9}}\gt \log_2{\sqrt{8}}=\log_2{2^{\frac{3}{2} }}={\color{Red} \cfrac{3}{2}} =\log_{3}{3^{\frac{3}{2}}} =\log_{3}{\sqrt{27}}\gt \log_{3}{\sqrt{25} } ={\color{Red} \log_{3}{5} }$
$ \log_{3}{5} =\log_{3}{5^{\frac{3}{3}}}=\log_{3}{125^{\frac{1}{3} }}\gt \log_{3}{81^{\frac{1}{3} }}=\cfrac{4}{3}=\log_{5}{5^{\frac{4}{3} }}=\log_{5}{625^{\frac{1}{3} }} \gt \log_{5}{512^{\frac{1}{3} }}=\log_{5}{8}$


$例13.在\triangle ABC中,角A,B,C所对三边为a,b,c,且外接圆半径为R=5,则\cfrac{abc}{a^2+b^2+2c^2}的最大值为:$
$解:c=10\sin C,c^2=a^2+b^2-2ab\cos C\Rightarrow \cfrac{abc}{a^2+b^2+2c^2}=\cfrac{10ab\sin C}{a^2+b^2+2(a^2+b^2-2ab\cos C)}$
$=\cfrac{10ab\sin C}{3a^2+3b^2-4ab\cos C}\le \cfrac{10ab\sin C}{6ab-4ab\cos C}=\cfrac{5ab\sin C}{3ab-2ab\cos C}=\cfrac{5\sin C}{3-2\cos C}$
$C\in (0,\pi),\qquad \therefore\quad \cfrac{5\sin C}{3-2\cos C}=\cfrac{10\sin \cfrac{C}{2}\cos\cfrac{C}{2}}{5\sin^2\cfrac{C}{2}+\cos^2\cfrac{C}{2}}=\cfrac{10\tan\cfrac{C}{2}}{5\tan^2\cfrac{C}{2}+1}=\cfrac{10}{5\tan \cfrac{C}{2}+\cfrac{1}{\tan \cfrac{C}{2}}}$
$原式\le \cfrac{10}{2\sqrt{5}}=\sqrt{5},当且仅当5\tan \cfrac{C}{2}=\cfrac{1}{\tan \cfrac{C}{2}},\tan \cfrac{C}{2}=\cfrac{\sqrt{5}}{5}时取=$

$例1、已知函数f(x)=2(x-2)\ln x+ax^2-1.$
$①、当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程;$
$②、若f(x)\ge 0恒成立,求实数a的取值范围。$
$解:②2(x-2)\ln x+ax^2-1\ge 0$
$f(1)=a-1\ge 0\Rightarrow a\ge 1,充分性;$
$ax^2\ge x^2,即证2(x-2)\ln x+x^2-1\ge0,必要性;$
$g(x)=2(x-2)\ln x+x^2-1;$
${g}' (x)=2\ln x+\cfrac{2(x-2)}{x} +2x=2\ln x+2-\cfrac{4}{x}+2x, $
${g}' (1)=0,{g}' (x)\nearrow ;g(x)_{min}=g(1)=0$


$例2、设函数f(x)=x^2-(a+2)x+a\ln x\quad (a\in \mathbb{R} ).$
$①、若x=3是f(x)的极值点,求f(x)的单调区间;$
$②、若f(x)\ge 1,求a的取值范围。$
$解:②法一:f(1)=1-(a+2)\ge 1,a\le -2;必要性,$
$证a\le -2,f(x)\ge 1恒成立(充分性);$
$-ax+a\ln x=-a(x-\ln x),{\color{Red} \because x-\ln x \ge 1,易证} \Rightarrow -a(x-\ln x)\ge 2(x-\ln x)$
$故f(x)=x^2-(a+2)x+a\ln x\ge x^2-2x+2(x-\ln x)=x^2-\ln x^2\gt 1;$

$法二:利用函数的保号性,f(x)\ge 1,f(x)-1\ge 0$
$x^2-(a+2)x+a\ln x-1\ge 0$
$x^2-2x+1+{\color{Red} 2x-2-2\ln x}+{\color{Green} (-2-a)(x-\ln x)}\ge 0$
${\color{Red} \because } x^2-2x+1\ge 0,2x-2-2\ln x\ge 0,当且仅当x=1时取=,$
$故(-2-a)(x-\ln x)\ge 0也应满足当且仅当x=1时取=$
$故-2-a\ge 0{\color{Red} \Rightarrow a\le -2}$


$例3、 已知函数f(x)=\ln x-ax.$
$①讨论f(x)的单调性;$
$②设g(x)=e^{x-1}+xf(x),若g(x)\ge 0恒成立,求a的取值范围。$
$解:②g(x)=e^{x-1}+x(\ln x-ax)=e^{x-1}+x\ln x -ax^2\ge 0,$
$g(1)=1-a\ge 0\Rightarrow a\le 1;必要性;$
$证a\le 1时,成立,证充分性;$
${\color{Red} \because\quad x\gt 0} ,-ax^2\ge -x^2$
$g(x)\ge e^{x-1}+x\ln x-x^2\ge 0$
$\cfrac{e^{x-1}}{x} \ln x-x=e^{x-1-\ln x}-(x-1-\ln x)-1\ge 0$
$要证e^x-x-1\ge 0$


$例4、已知函数f(x)=2(x-1)\ln x+ax^2-1$
$①当a=0时,求曲线y=f(x)在点(1,f(1))处的切线方程。$
$②若f(x)\ge 0恒成立,求实数a的取值范围。$

$解:②f(1)=a-1\ge 0\Rightarrow a\ge 1,充分性;$
$证a\ge 1时,f(x)\ge 0恒成立。$
${\color{Red} f(x)\ge 2(x-1)\ln x+x^2-1\ge 0}$
$={\color{Red} 2(x-1)\ln x} +{\color{Green} x^2-2\ln x-1} \ge 0$
$易证2(x-1)\ln x和x^2-2\ln x-1均\ge 0,当且仅当x=1时取=0$


$例5、已知函数f(x)=\ln x-x^2;g(x)=xe^{x-1}+\cfrac{1}{2} x^3-2x^2.$
$①讨论f(x)的单调性;$
$②若x\gt0 ,g(x)\ge af(x)恒成立,求实数a的取值范围。$
$解:②h(x)=g(x)-af(x)=xe^{x-1}+\cfrac{1}{2} x^3-2x^2+ax^2-a\ln x\ge 0$
$h(1)a-\cfrac{1}{2} \Rightarrow a\ge \cfrac{1}{2} ,充分性;$
$证a\ge \cfrac{1}{2}时,恒成立。$
${\color{Green} a(x^2-\ln x)易证x^2-\ln x\gt 0} $
${\color{Red} xe^{x-1}+\cfrac{1}{2} x^3-2x^2+\cfrac{1}{2}x^2-\cfrac{1}{2}\ln x\ge 0} $
${\color{Red} 2xe^{x-1}+ x^3-3x^2-\ln x\ge 0} $
${\color{Green} 2x(e^{x-1}-x)+x^3-x^2-\ln x\ge 0}$$$
$2x(e^{x-1}-x)\ge 0,当且仅当x=1时取=$
$x^3-x^2-\ln x\ge 0,当且仅当x=1时取=$

圆锥曲线硬解定理:
1.椭圆与斜截式联立:
$\begin{cases} \cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 \\y=kx+m\end{cases}\Rightarrow b^2x^2+ay^2-a^2b^2=0\Rightarrow (b^2+a^2k^2)x^2+2a^2kmx+a^2(m^2-b^2)=0$

$\Delta ={\color{Red} 4a^4k^2m^2-4a^2(m^2-b^2)(b^2+a^2k^2)} =4a^2[a^2k^2m^2-(m^2-b^2)(b^2+a^2k^2)]$

$=4a^2(-b^2m^2+b^4+a^2b^2k^2)=4a^2b^2(b^2+a^2k^2-m^2)\quad 两根之差用$

$x_1+x_2=-\cfrac{2a^2km}{a^2k^2+b^2}$

$x_1x_2=\cfrac{a^2(m^2-b^2)}{a^2k^2+b^2}$

$(x_1-x_2)^2=(x_1+x_2)^2-4x_1x_2=\cfrac{4a^4k^2m^2}{(a^2k^2+b^2)^2}-\cfrac{4a^2(m^2-b^2)}{a^2k^2+b^2}$

$=\cfrac{{\color{Red}4a^4k^2m^2-4a^2(m^2-b^2)(a^2k^2+b^2) } }{(a^2k^2+b^2)^2}=\cfrac{{\color{Red} 4a^2b^2(b^2+a^2k^2-m^2)} }{(a^2k^2+b^2)^2}$

$横坐标的两根之差:|x_1-x_2|=\cfrac{\sqrt{\Delta } }{a^2k^2+b^2}$

$纵坐标的两根之差:|y_1-y_2|=\cfrac{\sqrt{k^2\Delta } }{a^2k^2+b^2}$

$y_1+y_2==k(x_1+x_2)+2m=-\cfrac{2a^2{\color{Red}k^2 } m}{a^2k^2+b^2}+\cfrac{2m{\color{Red}(a^2k^2+b^2 )} }{a^2k^2+b^2}$

$=\cfrac{{\color{Red}2b^2 m} }{a^2k^2+b^2}$

$y_1y_2=(kx_1+m)(kx_2+m)=k^2x_1x_2+km(x_1+x_2)+m^2$

$=\cfrac{a^2(m^2-b^2){\color{Red} k^2} }{a^2k^2+b^2} -\cfrac{2a^2km{\color{Red} km}}{a^2k^2+b^2}+\cfrac{(a^2k^2+b^2){\color{Red} m^2}}{a^2k^2+b^2}$

$=\cfrac{{\color{Red} a^2k^2m^2}-a^2b^2k^2-{\color{Red} 2a^2k^2m^2+a^2k^2m^2}+b^2m^2 }{a^2k^2+b^2}$

$=\cfrac{b^2(m^2-a^2k^2)}{a^2k^2+b^2}$

$x_1y_2+x_2y_1=x_1(kx_2+m)+x_2(kx_1+m)=2kx_1x_2+m(x_1+x_2)$

$=\cfrac{{\color{Red} 2k} a^2(m^2-b^2)}{a^2k^2+b^2}-\cfrac{{\color{Red} m} 2a^2km}{a^2k^2+b^2}=\cfrac{{\color{Red} 2a^2km^2} -2a^2b^2k{\color{Red} -2a^2km^2} }{a^2k^2+b^2}$

$=\cfrac{-2a^2b^2k }{a^2k^2+b^2}$

$=\cfrac{b^2(m^2-a^2k^2)}{a^2k^2+b^2}$

$\cfrac{y_1}{x_1} +\cfrac{y_2}{x_2} =2k+m(\cfrac{1}{x_1} +\cfrac{1}{x_2})=2k+m\cfrac{x_1+x_2}{x_1x_2}={\color{Red} \cfrac{2b^2k}{b^2-m^2} } $

$=\cfrac{-2a^2km{\color{Red} m} }{a^2(m^2-b^2)}+\cfrac{{\color{Red} 2k} a^2(m^2-b^2)}{a^2(m^2-b^2)}$
$\cfrac{x_1}{y_1} +\cfrac{x_2}{y_2} =\cfrac{x_1y_2+x_2y_1}{y_1y_2} =\cfrac{\cfrac{-2a^2b^2k }{a^2k^2+b^2}}{\cfrac{b^2(m^2-a^2k^2)}{a^2k^2+b^2}}==\cfrac{-2a^2b^2k }{b^2(m^2-a^2k^2)}$
$AB的长度其实就是横坐标的两根之差的\sqrt{1+k^2} 倍$

$|AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{a^2k^2+b^2}$
$AB的长度其实就是横坐标的两根之差的\sqrt{1+k^2} 倍$

$|AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{a^2k^2+b^2}$

$\overrightarrow{OA}\cdot \overrightarrow{OB}=\cfrac{(a^2+b^2)m^2-a^2b^2(1+k^2)}{a^2k^2+b^2}$

$=x_1x_2+y_1y_2 =\cfrac{a^2(m^2-b^2)}{a^2k^2+b^2}+\cfrac{b^2(m^2-a^2k^2)}{a^2k^2+b^2}$

2.椭圆与横截式联立:

$\begin{cases} \cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 \\x=ky+m\end{cases}\Rightarrow b^2x^2+ay^2-a^2b^2=0\Rightarrow (a^2+b^2k^2)x^2+2b^2kmx+b^2(m^2-a^2)=0$

$椭圆与斜截式联立\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad椭圆与横截式联立$

$x_1+x_2=-\cfrac{2a^2km}{a^2k^2+b^2}\qquad\qquad\qquad\qquad\qquad y_1+y_2=-\cfrac{2b^2km}{b^2k^2+a^2}$

$x_1x_2=\cfrac{a^2(m^2-b^2)}{a^2k^2+b^2}\qquad\qquad\qquad\qquad\qquad\quad y_1y_2=\cfrac{b^2(m^2-a^2)}{b^2k^2+a^2}$

$y_1+y_2=\cfrac{2b^2 m} {a^2k^2+b^2}\quad\qquad\qquad\qquad\qquad\qquad x_1+x_2=\cfrac{2a^2 m} {b^2k^2+a^2}$

$y_1y_2=\cfrac{b^2(m^2-a^2k^2)}{a^2k^2+b^2}\qquad\qquad\qquad\qquad\qquad x_1x_2=\cfrac{a^2(m^2-b^2k^2)}{b^2k^2+a^2}$

$x_1y_2+x_2y_1=\cfrac{-2a^2b^2k }{a^2k^2+b^2}\qquad\qquad\qquad\qquad x_1y_2+x_2y_1=\cfrac{-2a^2b^2k }{b^2k^2+a^2}$分子完全一样

$\cfrac{y_1}{x_1} +\cfrac{y_2}{x_2}=\cfrac{2b^2k}{b^2-m^2}\qquad \qquad\qquad \qquad\qquad \cfrac{x_1}{y_1} +\cfrac{x_2}{y_2}=\cfrac{2a^2k}{a^2-m^2}$

$\cfrac{x_1}{y_1} +\cfrac{x_2}{y_2} =\cfrac{2a^2k }{a^2k^2-m^2}\qquad \qquad \qquad \qquad\qquad \cfrac{y_1}{x_1} +\cfrac{y_2}{x_2} =\cfrac{2b^2k }{b^2k^2-m^2}$

$\Delta =4a^2b^2(b^2+a^2k^2-m^2)\qquad\qquad\qquad \quad \Delta =4a^2b^2(a^2+b^2k^2-m^2)$

$|x_1-x_2|=\cfrac{\sqrt{\Delta } }{a^2k^2+b^2}\qquad \qquad\qquad \qquad \qquad |y_1-y_2|=\cfrac{\sqrt{\Delta } }{b^2k^2+a^2}$

$|y_1-y_2|=\cfrac{\sqrt{k^2\Delta } }{a^2k^2+b^2}\quad\qquad \qquad\qquad \qquad \qquad |x_1-x_2|=\cfrac{\sqrt{k^2\Delta } }{b^2k^2+a^2}$
$|AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{a^2k^2+b^2}\qquad \qquad\qquad \qquad\quad |AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{b^2k^2+a^2}$
$\overrightarrow{OA}\cdot \overrightarrow{OB}=\cfrac{(a^2+b^2)m^2-a^2b^2(1+k^2)}{a^2k^2+b^2}\qquad\qquad \overrightarrow{OA}\cdot \overrightarrow{OB}=\cfrac{(a^2+b^2)m^2-a^2b^2(1+k^2)}{b^2k^2+a^2}$


2.双曲线与斜截式联立:
$\begin{cases} \cfrac{x^2}{a^2}- \cfrac{y^2}{b^2}=1 \\y=kx+m\end{cases}\Rightarrow b^2x^2+ay^2-a^2b^2=0\Rightarrow (b^2+a^2k^2)x^2+2a^2kmx+a^2(m^2-b^2)=0$
$双曲线与斜载式联立\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad双曲线与横截式联立$

$x_1+x_2=\cfrac{2a^2km}{b^2-a^2k^2}\qquad\qquad\qquad\qquad\qquad y_1+y_2=-\cfrac{2b^2km}{b^2k^2-a^2}$

$x_1x_2=-\cfrac{a^2(m^2+b^2)}{b^2-a^2k^2}\qquad\qquad\qquad\qquad\qquad\quad y_1y_2=\cfrac{b^2(m^2-a^2)}{b^2k^2-a^2}$

$y_1+y_2=\cfrac{2b^2 m} {b^2-a^2k^2}\quad\qquad\qquad\qquad\qquad\qquad x_1+x_2=\cfrac{-2a^2 m} {b^2k^2-a^2}$

$y_1y_2=\cfrac{b^2(m^2-a^2k^2)}{b^2-a^2k^2}\qquad\qquad\qquad\qquad\qquad x_1x_2=\cfrac{-a^2(m^2+b^2k^2)}{b^2k^2-a^2}$

$x_1y_2+x_2y_1=\cfrac{-2a^2b^2k }{b^2-a^2k^2}\qquad\qquad\qquad\qquad x_1y_2+x_2y_1=\cfrac{-2a^2b^2k }{b^2k^2-a^2}$分子完全一样

$\cfrac{y_1}{x_1} +\cfrac{y_2}{x_2}=\cfrac{2b^2k}{b^2+m^2}\qquad \qquad\qquad \qquad\qquad \cfrac{x_1}{y_1} +\cfrac{x_2}{y_2}=\cfrac{2a^2k}{a^2-m^2}$

$\cfrac{x_1}{y_1} +\cfrac{x_2}{y_2} =\cfrac{2a^2k }{a^2k^2-m^2}\qquad \qquad \qquad \qquad\qquad \cfrac{y_1}{x_1} +\cfrac{y_2}{x_2} =\cfrac{2b^2k }{b^2k^2+m^2}$

$\Delta =4a^2b^2(b^2-a^2k^2+m^2)\qquad\qquad\qquad \quad \Delta =4a^2b^2(b^2k^2-a^2+m^2)$

$|x_1-x_2|=\cfrac{\sqrt{\Delta } }{|a^2k^2-b^2|}\qquad \qquad\qquad \qquad \qquad |y_1-y_2|=\cfrac{\sqrt{\Delta } }{|b^2k^2-a^2|}$

$|y_1-y_2|=\cfrac{\sqrt{k^2\Delta } }{|a^2k^2-b^2|}\quad\qquad \qquad\qquad \qquad \qquad |x_1-x_2|=\cfrac{\sqrt{k^2\Delta } }{|b^2k^2-a^2|}$
$|AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{|a^2k^2-b^2|}\qquad \qquad\qquad \qquad\quad |AB|=\cfrac{\sqrt{(1+k^2)\Delta } }{|b^2k^2-a^2|}$
$\overrightarrow{OA}\cdot \overrightarrow{OB}=\cfrac{(a^2-b^2)m^2+a^2b^2(1+k^2)}{a^2k^2-b^2}\qquad\qquad \overrightarrow{OA}\cdot \overrightarrow{OB}=\cfrac{(a^2-b^2)m^2+a^2b^2(1+k^2)}{-b^2k^2+a^2}$

$例题:已知函数f(x)=(x-1)(e^x-1).$
$①求f(x)在x=1处的切线方程;$
$②若若关于x的方程f(x)=a有两个不同零点x_1,x_x,$$求证:|x_1-x_2|\le \cfrac{ea}{e-1} +1$
$例1:(2023年资阳一模)x+1=ae^x有两个不相等实根x_1,x_2,$
$求证:|x_1-x_2|\gt e-ea+\sqrt{1-a}$
$例2:已知函数f(x)=\cfrac{x^2-3x+2}{e^x}$
$①求曲线y=f(x)在零点处的切线方程;$$②若方程f(x)=m(m\lt 0)有两个不等实根x_1,x_2,$
$求证:|x_1-x_2|\lt |me(e+1)+1|$
$例3:已知函数f(x)=x\ln x.$
$①求证:f(x)\le ex^2-2x恒成立;$
$②若函数F(x)=f(x)-a有两个不同零点x_1,x_x,$$求证:|x_1-x_2|\gt (e-1)(a+\cfrac{1}{e})+\cfrac{1}{\sqrt{e} }\sqrt{a+\cfrac{1}{e }}$
$例4:已知函数f(x)=(x-1)\ln (x-1).$
$①若关于x的不等式f(x)\ge \lambda (x-2)在(1,+\infty)恒成立;$
$求实数\lambda的取值集合;$
$②若关于x的方程f(x+1)=a有两个不同零点x_1,x_x,$$求证:|x_1-x_2|\lt 2a+1+e^{-2}$
$或②若关于x的方程f(x+1)=a有两个不同零点x_1,x_x,$$求证:|x_1-x_2|\lt \cfrac{3a}{2} +1+\cfrac{1}{2e^3} $
$例5:已知函数f(x)=\ln x-x^2+1$
$①证明:f(x)\lt x$
$②若关于x的方程f(x)=a有两个不同实根x_1,x_x,求证:|x_1-x_2|\le 1-2a$
$例题:x_1-x_2\le \cfrac{a}{e-1} +1-(-a)$
$例1:x_1-x_2\gt e-ea-(-\sqrt{1-a} )$
$例2:x_1-x_2\lt -(e^2m+2+em-1)=-[e^2m+2-(-em+1)]$
$例3:x_1-x_2\gt ea+1-a-(\cfrac{1}{e}-\cfrac{1}{\sqrt{e} }\sqrt{a+\cfrac{1}{e} } )$
$例4:x_1-x_2\lt a+1-(a-e^{-2})或a+1-(-\cfrac{1}{2}a-\cfrac{1}{2e^3} )$
2025-07-22T01:36:41.png
2025-07-22T07:05:21.png
$g(x)=x-\ln x,m\in (1,+\infty);$
$先证g(e^{-m})\gt m=g(x_1)\gt g(1);$
$再证g(em)\gt m=g(x_2)\gt g(1)$

$1、a\gt 0,b\gt 0,若\cfrac{1}{a}+\cfrac{1}{b}=1,则a+b的最小值为:$
$2、a\gt 0,b\gt 0,若a+b=ab,则a+b的最小值为:$
$3、a\gt 0,b\gt 0,若a+b+1=ab,则a+b的最小值为:$
$提示:拼凑,消元。$
$4、a\gt 0,b\gt 0,若a+b=2,则\cfrac{1}{a+1}+\cfrac{1}{b+2}的最小值为:$
$提示:拼凑,双换元。$
$5、a\gt 0,b\gt 0,若2a+b=3,则\cfrac{1}{5a+b}+\cfrac{1}{a+2b}的最值为:$
$提示:拼凑,双换元。$
$6、a\gt 0,b\gt 0,则\cfrac{a}{a+2b}+\cfrac{b}{a+b}的最小值为:$
$提示:拼凑,双换元。$
$7、a\gt 0,b\gt 0,若a+2b=1,求\cfrac{b^2+a+1}{2ab}的最小值为:$
$提示:齐次化$
$8、已知实数x,y满足x\gt 0,y\gt 0,且x+\cfrac{y}{2} +\cfrac{1}{x}+\cfrac{2}{y}=5,求2x+y的最大值。$
$9、已知正实数a,b,c,满足b+c=1,则\cfrac{8ab^2+a}{bc} +\cfrac{18}{a+1}的最小值为:$
$10、已知a\gt b\gt 0,当代数式a^2+\cfrac{9}{b(a-b)}取最小值时,a+2b的值为:$
$11、已知:x,y\gt 0,且满足:\cfrac{8}{x^2} +\cfrac{1}{y}=1,求x+y的最小值:$
$12、若x,y\in \mathbb{R} ^+,(x-y)^2=(xy)^3,则\cfrac{1}{x} +\cfrac{1}{y}的最小值为:$

$8、解:\cfrac{1}{2} (2x+y) +\cfrac{2x+y}{xy}=5\Rightarrow (2x+y)(\cfrac{1}{2}+\cfrac{1}{xy})=5$
${\color{Red} \Rightarrow} \begin{cases} (2x+y)(\cfrac{1}{2}+\cfrac{1}{xy})=5\\ 2x+y\ge 2\sqrt{2xy} \end{cases}$
$令t=2x+y,t(\cfrac{1}{2}+\cfrac{1}{xy})=5\Rightarrow \cfrac{1}{2}+\cfrac{1}{xy}=\cfrac{5}{t} \Rightarrow\cfrac{1}{xy}=\cfrac{5}{t}- \cfrac{1}{2}=\cfrac{10-t}{2t}$
$\Rightarrow\cfrac{1}{xy}=\cfrac{10-t}{2t}\Rightarrow xy=\cfrac{2t}{10-t}$
${\color{Red} \therefore } 2x+y\ge 2\sqrt{2xy} {\color{Green} \Rightarrow } t\ge 2\sqrt{2\cdot \cfrac{2t}{10-t}} $
$两边平方,得t\times{\color{Red} t}\ge \cfrac{16{\color{Red} t} }{10-t}\Rightarrow t\ge \cfrac{16}{10-t}$
$\Rightarrow t^2-10t-16\le 0\Rightarrow (t-2)(t-8)\le 0,2\le t\le 8$
$别忘记检验是否相等,是否能取到最大值。$
$9、\cfrac{8ab^2+a}{bc} +\cfrac{18}{a+1}\Rightarrow \cfrac{a(8b^2+1)}{bc} +\cfrac{18}{a+1}{\color{Red} \quad \because }\quad\cfrac{8b^2+1}{bc}=\cfrac{8b^2+1}{bc}$
$\cfrac{8b^2+1}{bc} =\cfrac{8b^2+(b+c)^2}{bc}=\cfrac{9b^2+2bc+c^2}{bc} =\cfrac{9b}{c} +\cfrac{c}{b}+2\ge 2\sqrt{9} +2=8$
$ {\color{Red} \therefore } \cfrac{a(8b^2+1)}{bc} +\cfrac{18}{a+1}\ge 8a+\cfrac{18}{a+1}=8(a+1)+\cfrac{18}{a+1}-8\ge 2\sqrt{8\times 18} -8=16$
$10、{\color{Red} \because \quad } b(a-b)\le \cfrac{(a-b+b)^2}{4} =\cfrac{a^2}{4}\quad {\color{Red} \therefore \quad a^2+\cfrac{9}{b(a-b)}\ge a^2+\cfrac{36 }{a^2} \ge 2\sqrt{36} }\Rightarrow \begin{cases} \cfrac{36}{a^2}=a^2\\b=a-b \end{cases}\Rightarrow $
$11、(\cfrac{8}{x^2} +\cfrac{1}{y})x+y=\cfrac{8}{x} +\cfrac{x}{y} +y\ge 3\sqrt[3]{\cfrac{8}{x} \times\cfrac{x}{y} \times y}暴力消参求导也很快$

$12、(x-y)^2=(xy)^3齐次化之\Rightarrow \cfrac{(x-y)^2}{x^2y^2}=xy \Rightarrow (\cfrac{x-y}{xy})^2=(\cfrac{1}{y}-\cfrac{1}{x})^2=xy$
$\Rightarrow (\cfrac{1}{y}+\cfrac{1}{x})^2-\cfrac{4}{xy}=xy\Rightarrow (\cfrac{1}{y}+\cfrac{1}{x})^2=xy+\cfrac{4}{xy}\ge 4 $

$答案:1:4,2:4,3:2\sqrt{2} ;4:\cfrac{4}{5}$;12:2$