?v=1.1

分类 解析几何 下的文章

1.斜率之积为定值
大家还记得这道题的考点吗:$椭圆 \cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 上存在三点A(x_0,y_0),M,N,且满足k_{AM}k_{AN}=\lambda ,$
$\lambda \ne\cfrac{a^2}{b^2},那么直线过定点P(tx_0,-ty_0)(t=\cfrac{a^2\lambda +b^2}{a^2\lambda -b^2})$。
证明方法,用平移齐次法。
2.斜率之和为定值
下面让我们转换视角,看看斜率之和为定值的情况:
$椭圆\cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 上存在三点A(x_0,y_0),M,N,且满足k_{AM}+k_{AN}=\lambda (\lambda \ne0),$
$那么直线过定点P(x_0-\cfrac{2y_0}{\lambda},-y_0+\cfrac{2(e^2-1)x_0}{\lambda})=(x_0-\cfrac{2y_0}{\lambda},-y_0-\cfrac{2b^2x_0}{a^2\lambda})$。
$证明:记k_1=k_{AM},k_2=k_{AN}$
$作平移变换:\begin{cases} {x}'=x-x_0\\\quad\\{y}'=y-y_0 \end{cases}\Rightarrow \begin{cases} x={x}'+x_0\\\quad \\y={y}'+y_0 \end{cases}$
$使得A(x_0,y_0)成为新坐标系的原点{A}'(0,0)$
$\cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 \Rightarrow \cfrac{({x}'+x_0)^2}{a^2}+ \cfrac{({y}'+y_0)^2}{b^2}=1$
$a^2{y}'^2+2(b^2x_0{x}'+a^2y_0{y}')+b^2{x}'^2=0$
$平移后的直线{M}'{N}':m{x}'+n{y}'=1,上式一次项乘上m{x}'+n{y}',$
$a^2{y}'^2+2(b^2x_0{x}'+a^2y_0{y}')(m{x}'+n{y}')+b^2{x}'^2=0$
$\Rightarrow a^2(1+2ny_0){y}'^2+2(nb^2x_0+ma^2y_0){x}'{y}'+b^2(1+2mx_0){x}'^2=0$
$除以{x}'^2,得a^2(1+2ny_0)\cfrac{{y}'^2}{{x}'^2}+2(nb^2x_0+ma^2y_0)\cfrac{{y}'}{{x}'}+b^2(1+2mx_0)=0$
$\Rightarrow a^2(1+2ny_0){k}'^2+2(nb^2x_0+ma^2y_0){k}'+b^2(1+2mx_0)=0$
$由韦达定理,得{k_1}' +{k_2}' =-\cfrac{2(nb^2x_0+ma^2y_0)}{a^2(1+2ny_0)},{k_1}' {k_2}' =\cfrac{b^2(1+2mx_0)}{a^2(1+2ny_0)}$


1.斜率之积为定值:
${k_1}' {k_2}' =\cfrac{b^2(1+2mx_0)}{a^2(1+2ny_0)}=\lambda:t=\cfrac{b^2}{a^2\lambda},$
$则:t(1+2mx_0)=1+2ny_0\Rightarrow n=\cfrac{t(1+2mx_0)-1}{2y_0}$
$所以,m{x}'+n{y}'=1\Rightarrow m{x}'\cfrac{t(1+2mx_0)-1}{2y_0}{y}'=1$
$因为 m是设出来的参数,而我们要找的是直线 {M}'{N}'所过的定点,也就是要找到关于$
${x}',{y}'的恒等式,那就要消掉参数m,也就是让和 m相乘的式子等于 0,$
所以整理式子得:$ m({x}'+\cfrac{x_0t}{y_0}{y}')+\cfrac{t-1}{2y_0}{y}'=1$,
$\begin{cases} \cfrac{t-1}{y_0}{y}'=0\\ \quad \\{x}'+\cfrac{x_0t}{y_0}{y}'=0\end{cases}$
$\Rightarrow \begin{cases} {y}'=\cfrac{2y_0}{t-1}\\ \quad \\{x}'=\cfrac{2x_0t}{1-t}\end{cases}再代入 \begin{cases} x={x}'+x_0\\ \quad \\y={y}'+y_0\end{cases}\Rightarrow $
$\begin{cases} x=\cfrac{2x_0t}{1-t}+x_0=\cfrac{t+1}{1-t}x_0=\cfrac{x_0(b^2+\lambda a^2)}{a^2\lambda -b^2}\\ \quad \\y=\cfrac{2y_0}{t-1}+y_0=\cfrac{t+1}{t-1}y_0=\cfrac{y_0(b^2+\lambda a^2)}{-(a^2\lambda -b^2)}\end{cases}\Rightarrow$

$也就是说直线MN过定点P(\cfrac{x_0(b^2+\lambda a^2)}{a^2\lambda -b^2},\cfrac{y_0(b^2+\lambda a^2)}{-(a^2\lambda -b^2)})$

2.斜率之和为定值$\lambda$
$斜率之和{k_1}' +{k_2}' =-\cfrac{2(nb^2x_0+ma^2y_0)}{a^2(1+2ny_0)}=\lambda:记t=\cfrac{b^2}{a^2}$
$则:nb^2x_2+ma^2y_0=\cfrac{\lambda a^2(1+2ny_0)}{-2}\Rightarrow m=\cfrac{\lambda(\cfrac{1}{2}+ny_0)+ntx_0}{-y_0},$
$m{x}'+n{y}'=1,所以,\Rightarrow \cfrac{\lambda(\cfrac{1}{2}+ny_0)+ntx_0}{-y_0}{x}'+n{y}'=1$
$因为 n是设出来的参数,而我们要找的是直线 {M}'{N}'所过的定点,也就是要找到关于$
${x}',{y}'的恒等式,那就要消掉参数n,也就是让和 n相乘的式子等于 0,$
所以,整理式子得:$n[{y}'-(\lambda+\cfrac{tx_0}{y_0}{x}')]-\cfrac{\lambda}{2y_0}{x}'=1$
$\begin{cases} {x}'=-\cfrac{2y_0}{\lambda } \\{y}'=-2(y_0+\cfrac{tx_0}{\lambda } ) \end{cases}$再代入$\begin{cases} x={x}'+x_0\\ \quad \\y={y}'+y_0\end{cases}\Rightarrow $
$\begin{cases} x=-\cfrac{2y_0}{\lambda } +x_0\\ \quad \\y=-2(y_0+\cfrac{tx_0}{\lambda } )+y_0\end{cases}$
也就是说直线MN过定点$P(x_0-\cfrac{2y_0}{\lambda},-y_0+\cfrac{2(e^2-1)x_0}{\lambda})=(x_0-\cfrac{2y_0}{\lambda},-y_0-\cfrac{2b^2x_0}{a^2\lambda})$

适用于圆锥曲线中的直线过轴点时使用。
比如:$例1中直线过T(4,0),例2中直线过T(2,0),例3中直线过T(0,4)。$
前置知识:$动直线l过定点(t,0)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1}{x_1-t}=\cfrac{y_2}{x_2-t}\Rightarrow x_1y_2-x_2y_1=t(y_2-y_1)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(1-\cfrac{y_1^2}{b^2})^2y_2^2-a^2(1-\cfrac{y_2^2}{b^2})^2y_1^2}{t(y_2-y_1)}=\cfrac{a^2(y_2^2-y_1^2)}{t(y_2-y_1)}=\cfrac{a^2}{t}(y_2+y_1)$

$动直线l过定点(0,t)交椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1于两点(x_1,y_1),(x_2,y_2)$
根据直线的两点式有:$\cfrac{y_1-t}{x_1}=\cfrac{y_2-t}{x_2}\Rightarrow x_1y_2-x_2y_1=t(x_1-x_2)$
构造$x_1y_2-x_2y_1的对偶式x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{t(x_1-x_2)}=\cfrac{b^2(1-\cfrac{x_2^2}{a^2})^2x_1^2-b^2(1-\cfrac{x_1^2}{a^2})x_2^2}{t(x_1-x_2)}=\cfrac{b^2(x_1^2-x_2^2)}{t(x_1-x_2)}=\cfrac{b^2}{t}(x_1+x_2)$


$例1、已知双曲线\Gamma :\cfrac{x^2}{4}-y^2=1,AB为左右顶点,设过定点T(4,0)的直线与双曲线$
$交于CD两点(不与AB重合),记直线AC,BD的斜率为k_1,k_2, 证明\frac{k_1}{k_2}为定值。-\cfrac{1}{3}$
听耳畔秋风知乎
$解:设l_{AB}:x=my+4,A(-2,0),B(2,0),C(x_1,y_1)D(x_2,y_2);$
$k_1=k_{AC}=\cfrac{y_1}{x_1+2},k_2=k_{BD}=\cfrac{y_2}{x_2-2}$
$\cfrac{y_1}{x_1-4}=\cfrac{y_2}{x_2-4}{\color{Green} \Rightarrow y_1(x_2-4)=y_2(x_1-4)\Rightarrow x_1y_2-x_2y_1=4(y_2-y_1)}$
它的对偶式有:
${\color{Green}x_1y_2+x_2y_1=\cfrac{(x_1y_2)^2-(x_2y_1)^2}{x_1y_2-x_2y_1} =\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}}$
$=\cfrac{x_1^2y_2^2-x_2^2y_1^2}{ 4(y_2-y_1)}=\cfrac{4(y_1^2+1)y_2^2-4(y_2^2+1)y_2^2}{4(y_2-y_1)}=y_2+y_1$
$\cfrac{k_1}{k_2}=\cfrac{y_1}{x_1+2} \cdot\cfrac{x_2-2}{y_2} =\cfrac{x_2y_1-2y_1}{x_1y_2+2y_2}$
$\begin{cases} x_1y_2-x_2y_1=4y_2-4y_1\quad \\x_1y_2+x_2y_1=y_2+y_1 \qquad \end{cases}\Rightarrow$
$2y_2x_1=5y_2-3y_1;2y_1x_2=-3y_2+5y_1\Rightarrow \cfrac{k_1}{k_2}=\cfrac{2x_2y_1-4y_1}{2x_1y_2+4y_2}=\cfrac{-3y_2+5y_1-4y_1}{5y_2-3y_1+4y1}=-\cfrac{1}{3}$


$例2、设AB为椭圆\cfrac{x^2}{16}+\cfrac{y^2}{6} =1的长轴,该椭圆的动弦PQ过C(2,0),但不过原点,$翊空知乎
$直线AP与QB相交于M,PB与AQ相交于点N。求直线MN的方程。x=8$
根据极点极线知识可知,$l_{MN}为C(2,0)关于椭圆的极线段,x=8$
$解:设P(x_1,y_1),Q(x_2,y_2),A(-4,0),B(4,0)$
$l_{PQ}:\cfrac{y_1}{x_1-2} =\cfrac{y_2}{x_2-2} \Rightarrow x_1y_2-x_2y_1=2(y_2-y_1)$
容易得到它的对偶式:${\color{Red} x_1y_2+x_2y_1=8(y_2+y_1)} $
$\begin{cases} l_{AP}:x=\cfrac{x_1+4}{y_1} \cdot y-4 \quad①\\l_{BQ}:x=\cfrac{x_2-4}{y_2} \cdot y+4 \quad②\end{cases}$
$消y解出x_M$
$(x+4)\cdot \cfrac{y_1}{x_1+4}=(x-4)\cdot \cfrac{y_2}{x_2-4}\Rightarrow ( \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4})\cdot x=-4( \cfrac{y_1}{x_1+4}+\cfrac{y_2}{x_2-4})\Rightarrow$
$x_M=\cfrac{-4(\cfrac{y_1}{x_1+4}+ \cfrac{y_2}{x_2-4})}{ \cfrac{y_1}{x_1+4}-\cfrac{y_2}{x_2-4}}=\cfrac{-4[y_1(x_2-4)+ y_2(x_1+4)]}{ y_1(x_2-4)-y_2(x_1+4)} =\cfrac{-4(x_1y_2+x_2y_1+4y_2-4y_1)}{x_2y_1-x_1y_2-4(y_1+y_2)}$
将对偶式代入上式,得$x_M=\cfrac{-4(8y_1+8y_2+4y_2-4y_1)}{2(y_1-y_2)-4y_1-4y_2}=8$


$例3、已知椭圆C:\cfrac{x^2}{a^2} +\cfrac{y^2}{b^2} =1(a\gt b\gt b\gt 0)过点P(2,\sqrt{2} ),$择梦周知乎
$离心率e为\cfrac{\sqrt{2} }{2} ,$
$1、求椭圆方程;$
$2、C的上下顶点为A,B,过点(0,4)斜率为k的直线与椭圆交于MN两点,证明直线BM与AN的$
$交点G在定直线,并求出该定直线方程。y=1$
https://one.free.nf/index.php/archives/43/
例4.2020年新课标I
$已知A,B分别为椭圆E:\cfrac{x^2}{a^2}+y^2=1(a>1)$左右两个顶点,G为E的上顶点,$\vec{AG} \cdot\vec{GB}=8.P为直线x=6上的动点,PA与E的另一交点为C,PB与E的另一交点为D.$

(1)求E的方程;$\cfrac{x^2}{9}+y^2=1 $
(2)证明:直线CD过定点。
$这题目是已知\frac{k_2}{k_2} =3求动直线过定点,根据极点极线的知识容易得到极点坐标为(\cfrac{3}{2} ,0)$

$解:设C(x_1,y_1)D(x_2,y_2),A(-3,0)B(3,0),P(6,t)$
$k_1=k_{AC}=\cfrac{y_1}{x_1+3}, k_2=k_{BD}=\cfrac{y_2}{x_2-3}$
$显然k_2=3k_1$
$预备知识\begin{cases} \cfrac{x_1^2}{a^2}+ \cfrac{y_1^2}{b^2}=1\\ \cfrac{x_2^2}{a^2}+ \cfrac{y_2^2}{b^2}=1\end{cases}$
两式相减,得$\cfrac{y_1-y_2}{x_1-x_2} =(e^2-1)\cfrac{x_1+x_2}{y_1+y_2} =-\cfrac{b^2}{a^2} \cfrac{x_1+x_2}{y_1+y_2}$
说明:这式子也是椭圆的第三定义的应用。是两点在椭圆上的斜率变换,加上两点的斜率公式,称作斜率双用。
$AC,BD各利用上面的变换,得 \begin{cases} k_1=k_{AC}=\cfrac{y_1}{x_1+3}=(e^2-1)\cfrac{x_1-3}{y_1}, ①\\ k_2=k_{BD}=\cfrac{y_2}{x_2-3}=(e^2-1)\cfrac{x_2+3}{y_2},②\end{cases}$
$①中左边的三倍=②的左边;①中右边的三倍=②的右边;$
$ \Rightarrow \begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}$
下面将有两种不同的方法得到答案。第一种是应用合比,第二种是斜率的对偶式应用。
$先来第一种:两式③④变形$
$\Rightarrow \begin{cases} \cfrac{y_1}{y_2}=\cfrac{(x_1+3)}{3(x_2-3)} , \\ \quad \\\cfrac{3(x_1-3)}{x_2+3}=\cfrac{y_1}{y_2},\end{cases}$
$\cfrac{y_1}{y_2}=\cfrac{4x_1-6}{4x_2-6}=\cfrac{x_1-\cfrac{3}{2} }{x_2-\cfrac{3}{2}}\Rightarrow {\color{Red} \cfrac{y_1}{x_1-\cfrac{3}{2} }=\cfrac{y_2}{x_2-\cfrac{3}{2}}}$
$故得,CD恒过(\cfrac{3}{2},0)$
法一毕!
法二前置知识:由直线的两点公式变形:
$\cfrac{y_1-{\color{Red} y} }{x_1-{\color{Red} x} } =\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow 交叉相乘得\Rightarrow ( y_1-{\color{Red} y} )(x_1-x_2)=(x_1-{\color{Red} x} )(y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-{\color{Red} y} (x_1-x_2)=x_1(y_1-y_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-x_1(y_1-y_2)={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }$
法二正题:
$\begin{cases} 3\cfrac{y_1}{x_1+3}=\cfrac{y_2}{x_2-3} ,{\color{Red} ③} \\ \quad \\3\cfrac{x_1-3}{y_1}=\cfrac{x_2+3}{y_2},{\color{Red} ④} \end{cases}两式交叉相乘$
$\begin{cases} 3y_1(x_2-3)=y_2(x_1+3),{\color{Red} ③} \\ \quad \\3y_2(x_1-3)=y_1(x_2+3),{\color{Red} ④}  \end{cases}观察这两式子特点。$

$\Rightarrow \begin{cases} 3y_1x_2-9y_1=y_2x_1+3y_2, \\ \quad \\3y_2x_1-9y_2=y_1x_2+3y_1, \end{cases}$接着对两式作差!不是和!!
$\Rightarrow 3y_1x_2-3y_2x_1-9y_1+9y_2=y_2x_1+3y_2-y_1x_2-3y_1, $
$\Rightarrow 4y_1x_2-4y_2x_1=6y_1-6y_2\Rightarrow y_1x_2-y_2x_1=\cfrac{3}{2} (y_1-y_2)$
$对比\quad x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }可知 ,CD恒过(\cfrac{3}{2},0)$
$例5、已知椭圆C:\cfrac{x^2}{a2}+\cfrac{y^2}{b^2} =1(a\gt b\gt0 )的离心率为\cfrac{\sqrt{2} }{2},且过点A(2,1)$

$例1、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,求焦点的极线;$
$例2、\cfrac{x^2}{4} -y^2=1,求直线l:\frac{\sqrt{3} }{4} x-y=1的极点;$
$例3、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,左右端点A(-2,0),B(2,0), 过焦点F(1,0)的直线$
$l_0交椭圆C于PQ两点,连接AP,BQ交于点K,求K的轨迹方程.$
$解:画图找自极三角形,可知K的轨迹方程是F(1,0)关于C的极线\Rightarrow \frac{x}{4} =1\Rightarrow x=4,$
$即可用极点极线猜答案后证。$
解题过程:
$设l_0过焦点的直线方程为:x=my+1,点P(x_1,y_1),Q(x_2,y_2),K(x,y)({\color{Red} 反设直线,m为斜率的倒数} )$
$则有:\begin{cases} l_{AP}:x=\cfrac{x_1+2}{y_1} y-2\\ l_{BQ}:x=\cfrac{x_2-2}{y_1} y+2\end{cases}$
$消元去y,解x_K,\cfrac{y_1}{x_1+2} (x+2)=y=\cfrac{y_2}{x_2-2} (x-2),得$
$(\cfrac{y_2}{x_2-2} -\cfrac{y_1}{x_1+2}){\color{Red} x} =2(\cfrac{y_1}{x_1+2} +\cfrac{y_2}{x_2+2})\Rightarrow {\color{Red} x} =\cfrac{2(\cfrac{y_1}{x_1+2} +\cfrac{y_2}{x_2+2})}{\cfrac{y_2}{x_2-2} -\cfrac{y_1}{x_1+2}} $
$x=2\times \cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}{\color{Peach} 红色部份为对偶式,我们还要可以应用圆锥曲线的对偶式,简化计算} $
${\color{Peach} 根据前面的猜测,我们只需要证明此式=4即可} $
$即证\cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}=2$
$即证{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)=2({\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2))$
$即证\cfrac{{\color{Red} x_1y_2+x_2y_1} -2(y_1-y_2)}{{\color{Red} x_1y_2-x_2y_1} +2(y_1+y_2)}=2$
$即证:x_1y_2-3x_2y_1+6y_1+2y_2=0,消元去x,$
$即证:2my_1y_2-3(y_1+y_2)=0\quad {\color{Red} (\ast )}$
$应用韦达定理,联立l_0和C,\begin{cases} 3x^2+4y^2-12=0\\ x=my+1\end{cases}\Rightarrow$
$3(my+1)^2+4y^2-12=0\Rightarrow (3m^2+4)y^2+6my-9=0$
$\begin{cases} y_1+y_2=\cfrac{-6m}{3m^2+4} \quad ①\\y_1y_2=\cfrac{-9}{3m^2+4} \qquad ②\end{cases}$
$代入上式得,3\cdot \cfrac{-6m}{3m^2+4} -2m\cdot\cfrac{-9}{3m^2+4} =0$
$由此可见,K的轨迹为x=4是成立的。$


$例4、已知椭圆C:\cfrac{x^2}{4} +\cfrac{y^2}{3}=1,左右端点A(-2,0),B(2,0), 设点K的直线l:x=4上运动,$
$连接AK,BK, 分别交椭圆于P,Q, 问:直线PQ是否过定点,若是,请求出定值。$
解题思路:
从初始变量点K出发,设置变量,接着写出直线KA,KB,联立椭圆方程,求出点PQ坐标。
再用PQ坐标写出直线方程,观察一下哪个坐标可以代入成为恒等式!
最后一步最麻烦,直线方程代入是有计算量的关键式子,看出恒等式更是无从下手。那么利用极点极线先猜后证可以提供帮助!
$设K(4,t),则有\begin{cases} l_{AP}:x=\cfrac{6}{t}y-2\\l_{BQ}:x=\cfrac{2}{t}y+2 \end{cases}先联立C与l_{AP},求出P的坐标$
$\begin{cases} l_{AP}:x=\cfrac{6}{t}y-2\\3x^2+4y^2-12=0 \end{cases}\Rightarrow $
$3(\cfrac{6}{t}y-2)^2+4y^2-12=0 \Rightarrow 3(\cfrac{36}{t^2}y^2-\cfrac{24}{t}y+4)+4y^2-12=0$
$\Rightarrow (\cfrac{3\times 4\times 9}{t^2}+4 )y^2+\cfrac{3\times 4\times (-6)}{t}y =0\Rightarrow$
$y[(\cfrac{27}{t^2} +1)y-\cfrac{18}{t} ]=0 解得y=0,或{\color{Red} y_P=\cfrac{18t}{t^2+27} }代回直线l_{AP},得{\color{Red} x_P=\cfrac{-2t^2+54}{t^2+27} } $
$同理,联立l_{BQ}与C,有3(\cfrac{2}{t}y+2 )+4y^2-12=0\Rightarrow 3(\cfrac{24}{t^2}y+\cfrac{8}{t}y+4)+4y^2-12=0$
$\Rightarrow (\cfrac{3}{t^2} +1)y^2+\cfrac{6}{t}y=0 \Rightarrow {\color{Red} y_Q=-\cfrac{6t}{t^2+3} }$
$代入直线方程得,{\color{Red} x_Q=-\cfrac{2t^2-6}{t^2+3} }$
${\color{Green} 就这样,我们利用参数t,利用将PQ的坐标表示出来了} $
${\color{Green} 再设P(x_1,y_1)Q(x_2,y_2)写出直线PQ方程} $
$x=\cfrac{x_1-x_2}{y_1-y_2} (y-1)+x_1=\cfrac{x_1-x_2}{y_1-y_2} y-\cfrac{x_1-x_2}{y_1-y_2}$
$=\cfrac{x_1-x_2}{y_1-y_2} y-\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}$
$我们已经猜出定点坐标是F(1,0),所以我们可判断\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}=1;下一步,我们将PQ坐标代入证明它=1即可$
$x_P=\cfrac{-2t^2+54}{t^2+27},y_P=\cfrac{18t}{t^2+27}$
$x_Q=-\cfrac{2t^2-6}{t^2+3},y_Q=-\cfrac{6t}{t^2+3} ,$
$\cfrac{{\color{Red} x_2y_1-x_1y_2} }{y_1-y_2}=\cfrac{-\cfrac{2t^2-6}{t^2+3}\cdot\cfrac{18t}{t^2+27} -\cfrac{-2t^2+54}{t^2+27}\cdot -\cfrac{6t}{t^2+3} } {\cfrac{18t}{t^2+27}+\cfrac{6t}{t^2+3} }$
$=\cfrac{(-2t^2-6)\cdot18t -(-2t^2+54)\cdot (-6t)} {18t(t^2+3)+6t(t^2+27)}=$
$=\cfrac{3(2t^2-6)+54-2t^2}{3(t^2+3)+t^2+27} = \cfrac{4t^2+54-18}{4T^2+27+9} =1$
$由此可知直线PQ过点(1,0)$


不过这个解法太复杂了,完全依靠大力出奇迹。复杂点在于,用t表示点PQ的求解,和直线PQ直线的表示。既然难表示,那么就祭出设而不求大法!
法二:
$设直线l_{PQ}:x=my+n,点P(x_1,y_1)Q(x_2,y_2)写出两条直线$
$\begin{cases} l_{AP}: x=\cfrac{x_1+2}{y_1}y-2=m_1y-2\quad m_1=\cfrac{x_1+2}{y_1}\\ l_{BQ}:x=\cfrac{x_2-2}{y_1}y+2=m_2y+2\quad m_2=\cfrac{x_2-2}{y_2}\end{cases}$
$\frac{m_1}{m_2} =3=\cfrac{\cfrac{x_1+2}{y_1}}{\cfrac{x_2-2}{y_2}} \Rightarrow \cfrac{x_1+2}{y_1}=3\cfrac{x_2-2}{y_2}$
$\Rightarrow y_2(x_1+2)=3y_1(x_2-2)\Rightarrow x_1y_2-3x_2y_1+6y_1+2y_2=0\quad消元去x$
${\color{Red} 注:这里也可以不消元,而用斜率双用+直线两点式的变形求之}$
$2my_1y_2+(3n-6)y_1-(n+2)y_2=0\quad {\color{Red} (\ast )}$
$此式若n=1,便是例3的2my_1y_2-3(y_1+y_2)=0\quad {\color{Red} (\ast )}$
$马上上韦达定理,联立l_{PQ}和C$
$\begin{cases} x=my+n\qquad \qquad \\ 3x^2+4y^2-12=0\end{cases}\Rightarrow (3m^2+4)y^2+6mny+3n^2-12=0$
$\begin{cases} y_1+y_2=\cfrac{-6mn}{3m^2+4} \quad ①\\y_1y_2=\cfrac{3n^2-12}{3m^2+4}\quad②\end{cases}$
$②{\div} ①,\cfrac{y_1y_2}{y_1+y_2} =\cfrac{3n^2-12}{-6mn} =\cfrac{n^2-4}{-2mn} $
${\color{Red} \Rightarrow} y_1y_2={\color{Red} \cfrac{n^2-4}{-2mn}} \cdot (y_1+y_2){\color{Red} \Rightarrow} 2my_1y_2={\color{Red} \cfrac{n^2-4}{-n}} \cdot (y_1+y_2)$
${\color{Red} \cfrac{n^2-4}{-n}} \cdot (y_1+y_2)+(3n-6)y_1-(n+2)y_2=0\Rightarrow $
$(n^2-3n+2)y_1=(n^2+n-2)y_2\Rightarrow (n-2)(n-1)y_1=(n+2)(n-1)y_2$
$因为y_1\ne y_2,要上式恒成立,必要n=1,故直线过定点(1,0)$


10-19不消元,直接用斜率双用+直线两点式的变形
${\color{Red} 弦的斜率与弦中点与原点连线的斜率之积为定值e^2-1} $
$\begin{cases}k_{AP}=\cfrac{y_1}{x_1+2}=-\cfrac{3}{4}\cdot\cfrac{x_1-2}{y_1}\\ \quad \\k_{BP}=\cfrac{y_2}{x_2-2}=-\cfrac{3}{4}\cdot\cfrac{x_2+2}{y_2}\end{cases}$
${\color{Red}\because \quad } 3k_{AP}=k_{BP}\Rightarrow \begin{cases}3 \cdot\cfrac{y_1}{x_1+2}=\cfrac{y_2}{x_2-2}\\ \quad \\3\cdot\cfrac{x_1-2}{y_1}=\cfrac{x_2+2}{y_2}\end{cases}\Rightarrow \begin{cases} 3y_1(x_2-2)=y_2(x_1+2) \\ \quad \\3y_2(x_1-2)=y_1(x_2+2)\end{cases}$
$\Rightarrow \begin{cases} 3x_2y_1-6y_1=x_1y_2+2y_2 \\ \quad \\3x_1y_2-6y_2=x_2y_1+2y_1 \end{cases}两式相减\Rightarrow 3x_1y_2-3x_2y_1+6(y_1-y_2)=x_2y_1-x_1y_2+2(y_1-y_2)$
$\Rightarrow4x_1y_2-4x_2y_1=4(y_2-y_1)\Rightarrow x_1y_2-x_2y_1=y_2-y_1$
比较两点式的变形,可知,直线过定点$(1,0)$
$\cfrac{y_1-{\color{Red} y} }{x_1-{\color{Red} x} } =\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow 交叉相乘得\Rightarrow ( y_1-{\color{Red} y} )(x_1-x_2)=(x_1-{\color{Red} x} )(y_1-y_2)$
$\Rightarrow y_1(x_1-x_2)-{\color{Red} y} (x_1-x_2)=x_1(y_1-y_2)-{\color{Red} x} (y_1-y_2)$
$\Rightarrow x_1y_2-x_2y_1={\color{Red} y} (x_1-x_2)+{\color{Red} x} (y_2-y_1)\quad{\color{Red} \bullet \circ }$

11-1补充,定比分点公式:已知两点坐标,求分点的公式,分点可以是内分点,也可以外分点,前提是两定点及分比要确定。
要注意,$公式的分比=左定点到分点:分点到右定点 =m:n=\lambda:1$

在平面直角坐标系中,已知$A、B两点坐标分为(x_1,y_1),(x_2,y_2),P点坐标为(x,y),且有\overrightarrow{AP}=\lambda \overrightarrow{PB}$,那么我们就说P分有向线段AB之比为$\lambda,则有:x=\cfrac{x_1+\lambda x_2}{1+\lambda},y=x=\cfrac{y_1+\lambda y_2}{1+\lambda}.$这就是定比分点公式。
$当P为内分点时,\lambda \gt 0;$
$当P为外分点时,\lambda \lt 0(\lambda\ne -1);,$
这个公式在解决某些解析几何问题中有着很强大的作用,运用好往往可以几步就解决一个大题
先看一个例题
例1、已知A,B是椭圆$\cfrac{x^2}{25}+\cfrac{y^2}{16}=1$上的两个动点,设点$C(0,16),且\overrightarrow{CA}=\lambda \overrightarrow{CB},求\lambda$取值范围。
解:由题意得$\overrightarrow{AC}=-\lambda \overrightarrow{CB}(\lambda \gt 0)设A(x_1,y_1)B(x_2,y_2)$由定比分点公式可知$0=\cfrac{x_1-\lambda x_2}{1-\lambda},16=\cfrac{y_1-\lambda y_2}{1-\lambda},y_1=16(1-\lambda)+\lambda y_2$,又因为A,B在椭圆上,则有$\cfrac{x_1^2}{25}+\cfrac{y_1^2}{16}=1\quad ①\cfrac{x_2^2}{25}+\cfrac{y_2^2}{16}=1②$
$①-\lambda ^2\cdot ②,\Rightarrow 整理得\cfrac{(x_1+\lambda x_2)(x_1-\lambda x_2)}{25}+\cfrac{(y_1+\lambda y_2)(y_1-\lambda y_2)}{16}=1-\lambda ^2$
将$0=\cfrac{x_1-\lambda x_2}{1-\lambda},16=\cfrac{y_1-\lambda y_2}{1-\lambda}$代入得$y_1+\lambda y_2=1+\lambda$联立$y_1-\lambda y_2=16(1-\lambda),$解得$y_1=\cfrac{17}{2}-\cfrac{15}{2}\lambda $,又$-4\le y_1\le 4,即-4\le \cfrac{17}{2}-\cfrac{15}{2}\lambda\le 4,$得$\cfrac{3}{5}\le \lambda \le \cfrac{5}{3}$

练习:已知过定点$(0,3)$的直线与椭圆$\cfrac{x_1^2}{9}+\cfrac{y_1^2}{4}=1$交于两个不同的点A,B,且满足$\overrightarrow{AP}=\lambda \overrightarrow{PB}$,求$\lambda$取值范围。


例2:已知椭圆$\cfrac{x^2}{4}+\cfrac{y^2}{3}=1过P(4,1)作直线l交椭圆于A(x_1,y_1)B(x_2,y_2)(x_1\gt x_2)两点,$
且AB上存在点Q,使得$\cfrac{\overrightarrow{AP} }{\overrightarrow{PB}} =-\cfrac{\overrightarrow{AQ} }{\overrightarrow{QB}}$,求Q点轨迹方程。
解:设Q(x,y),有
$A,P,B\begin{cases} 4=\cfrac{x_1+\lambda x_2}{1+\lambda}\\\quad \\\ 1=\cfrac{y_1+\lambda y_2}{1+\lambda} \end{cases}\qquad A,Q,B\begin{cases} x=\cfrac{x_1-\lambda x_2}{1-\lambda}\\\quad \\\ y=\cfrac{y_1-\lambda y_2}{1-\lambda} \end{cases}\qquad A,B\begin{cases} \cfrac{x_1^2}{4}+\cfrac{y_1^2}{3}=1\quad ①\\\quad \\\ \cfrac{x_2^2}{4}+\cfrac{y_2^2}{3}=1\quad ② \end{cases}$
$①-\lambda ^2\cdot ②,\Rightarrow 得x+\cfrac{1}{3}y=1$


例3,过椭圆$\cfrac{x^2}{2}+y^2=1$的左焦点作直线交椭圆于点$A,B,若\overrightarrow{AF} =3\overrightarrow{FB}$,求点A的坐标。
解:设$AB点坐标为(x_1,y_1),(x_2,y_2),由定比分点公式有:\begin{cases}-1=\cfrac{x_1+3x_2}{1+3} \\ \quad \\ 0=\cfrac{y_1+3y_2}{1+3}\end{cases}$
$\begin{cases}\cfrac{x_1^2}{2}+y_1^2=1\quad ①\\ \cfrac{x_2^2}{2}+y_2^2=1\quad ②\end{cases}$
$①-\lambda ^2 ②\Rightarrow \cfrac{1}{2}(x_1+\lambda _2x_2)(x_1-\lambda _2x_2)+(y_1+\lambda _2y_2)(y_1-\lambda _2y_2)=1-\lambda^2$
$\Rightarrow x_1-3x_2=4,解得x_1=0,y_1=1$


例4、2008年安徽卷,设椭圆$\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)$过点$M(\sqrt{2},1)$且焦点$F_1(-\sqrt{2},0)$
(1)求椭圆方程
(2)若过点$P(4,1)$的动直线l与椭圆交于不同两点A,B在$\left |AB \right | $上取点Q,满足 $\left |AP \right | \cdot \left |QB \right | =\left |AQ \right | \cdot \left |PB \right |$,试证明:点Q在定直线上,并求出定直线方程。


例5、双曲线和椭圆有相同焦点,直线$y=\sqrt{3}x$是双曲线的一条渐近线。2008年山东高考
(1)求双曲线的方程。$x^2-\cfrac{y^2}{3}=1$
(2)过点$P(0,4)$的直线交双曲线于$A,B$两点,交x轴于$Q$点(与双曲线顶点不重合)若$\overrightarrow{PQ}=\lambda_1\overrightarrow{QA}=\lambda_2\overrightarrow{QB}$,且$\lambda _1+\lambda _2=-\cfrac{8}{3},求Q$点坐标。
解:第一问,题目给出椭圆方程的。
第二问:$P(0,4),设Q(x_0,0),A(x_1,y_1),B(x_2,y_2)$
由$\overrightarrow{PQ}=\lambda_1\overrightarrow{QA}=\lambda_2\overrightarrow{QB}$及定比分点公式,可得:
$\begin{cases}m=\cfrac{0+\lambda_1x_1}{1+\lambda_1}\\ 0=\cfrac{4+\lambda_1y_1}{1+\lambda_1}\end{cases}$ $\Rightarrow \begin{cases}x_1=\cfrac{1+\lambda_1}{\lambda_1}x_0\\y_1=-\cfrac{4}{\lambda_1}\end{cases}$
同理得$\begin{cases}m=\cfrac{0+\lambda_2x_2}{1+\lambda_2}\\ 0=\cfrac{4+\lambda_2y_2}{1+\lambda_2}\end{cases}$ $\Rightarrow \begin{cases}x_2=\cfrac{1+\lambda_2}{\lambda_2}x_0\\y_2=-\cfrac{4}{\lambda_2}\end{cases}$
A,B坐标结构是一样,同构,可设l方程的参数方程为:$\begin{cases}x=\cfrac{1+\lambda}{\lambda}x_0\\y=-\cfrac{4}{\lambda}\end{cases}与x^2-\cfrac{y^2}{3}=1$
把它看成$\lambda$的方程:$3(x_0^2-1)\lambda^2+6\lambda x_0^2+3x_0^2-16=0$
$\lambda_1+\lambda_2=-\cfrac{6x_0^2}{3(x_0^2-1)}=-\cfrac{8}{3}\Rightarrow x_0=\pm 2$


例6、抛物线$C_1:y^2=2px上一点M(3,y_0)$到焦点F的距离为4;椭圆$C_2:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)的e=\cfrac{\sqrt{3}}{2}$,且过抛物线$C_1于A,B$两个不同点,交y轴于点N,已知$\overrightarrow{NA}=\lambda\overrightarrow{AF},\overrightarrow{NB}=\mu\overrightarrow{BF}$,求证$\lambda+\mu$为定值。
解:$C_1:y^2=4x,C_2:\cfrac{y^2}{2}+x^2=1$
标答:抛物线焦点为$(1,0)$设l的斜率为$k,A(x_1,y_1),B(x_2,y_2),则l:y=k(x-1),N(0,-k)$
$\begin{cases}y^2=4x \\ y=k(x-1)\end{cases}\Rightarrow k^2x^2-(2k^2+4)x+k^2=0\quad \delta =16k^2+16\gt 0$
故$x_1+x_2=\cfrac{2k^2+4}{k^2}\quad x_1x_2=1$
由$\overrightarrow{NA}=\lambda\overrightarrow{AF},\overrightarrow{NB}=\mu\overrightarrow{BF}$,得$\lambda=\cfrac{x_1}{1-x_1}\quad \mu=\cfrac{x_2}{1-x_2}$
$\lambda+\mu=\cfrac{x_1}{1-x_1}+\cfrac{x_2}{1-x_2}=\cfrac{x_1+x_2-2x_1x_2}{1-(x_1+x_2)+x_1x_2}=\cfrac{\cfrac{2k^2+4}{k^2}-2}{2-\cfrac{2k^2+4}{k^2}}=-1$

法二:用定比分点公式,$F(1,0)设A(x_1,y_1),B(x_2,y_2),N(0,y_0)$
$\begin{cases}x_1=\cfrac{\lambda}{1+\lambda}\\y_1=\cfrac{y_0}{1+\lambda}\end{cases}\qquad \begin{cases}x_2=\cfrac{\mu}{1+\mu}\\y_2=\cfrac{y_0}{1+\mu}\end{cases}$
A,B坐标结构相同,可知设$l_{AB}的方程为\begin{cases}x=\cfrac{t}{1+t}\\y=\cfrac{y_0}{1+t}\end{cases}\quad t为参数$
与抛物线联立,得$\cfrac{y_0^2}{(1+t)^2}=\cfrac{4t}{1+t},4t^2+4t-y_0^2=0,t_1+t_2=\lambda+\mu =-1$
例5与例6是同构的应用。https://uu.890222.xyz/index.php/archives/318/
https://uu.890222.xyz/index.php/category/%E5%9C%86%E9%94%A5/3/


这个结论还可广至整个圆锥曲线:圆锥曲线中,过焦点F的焦点弦AB的延长线与另一坐标轴的交点为P,(A在PF之间)
$\begin{cases}\overrightarrow{PA}=\lambda_1\overrightarrow{AF}\\\overrightarrow{PB}=\lambda_2\overrightarrow{BF}\end{cases}\Rightarrow \lambda_1+\lambda_2=定值$

--

例7、已知离心率为$\cfrac{\sqrt{2}}{2}$的椭圆$C:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)$的上顶点为D,右焦点为F,点$P(4,2)且\left |PF \right |=\left |DF \right |。$
(1)求C的方程;极点极线
(2)过点$P作直线l交C于A,B两点(A在P与B之间),与直线DF交于点Q$。若$\overrightarrow{PA}=\lambda_1\overrightarrow{PB},\overrightarrow{QA}=\lambda_2\overrightarrow{BQ},$求$\lambda_1-\lambda_2$


例8、$F_1,F_2$是椭圆$\cfrac{x^2}{25}+\cfrac{y^2}{16}=1$的左右焦点,P为椭圆上任意一点,$PF_1,PF_2$分别交椭圆于A,B;若$\overrightarrow{PF_1}=\lambda_1\overrightarrow{F_1A},\overrightarrow{PF_2}=\lambda_1\overrightarrow{F_2B}$试证明$\lambda_1+\lambda_2$为定值。
解:设$P(x_0,y_0),A(x_1,y_1),B(x_2,y_2);F_1(-3,0),F_2(3,0)$
由定比分点公式有:$\begin{cases}-3=\cfrac{x_0+\lambda_1x_1}{1+\lambda_1}\\0=\cfrac{y_0+\lambda_1y_1}{1+\lambda_1}\end{cases}\Rightarrow x_0+\lambda_1x_1=-3(1+\lambda_1) \quad⑦\quad \begin{cases}3=\cfrac{x_0+\lambda_1x_2}{1+\lambda_2}\\0=\cfrac{y_0+\lambda_1y_2}{1+\lambda_2}\end{cases}\Rightarrow x_0+\lambda_2x_2=3(1+\lambda_2)\quad ⑧$
$\begin{cases}\cfrac{x_0^2}{25}+\cfrac{y_0^2}{16}=1\quad ①\\\cfrac{(\lambda_1x_1)^2}{25}+\cfrac{(\lambda_1y_1)^2}{16}=\lambda_1^2\quad ②\end{cases}\quad ①-②,得x_0-\lambda_1x_1=-\cfrac{25}{3}(1-\lambda_1)\quad ⑤$
$\begin{cases}\cfrac{x_0^2}{25}+\cfrac{y_0^2}{16}=1\quad ③\\\cfrac{(\lambda_2x_2)^2}{25}+\cfrac{(\lambda_2y_2)^2}{16}=\lambda_2^2\quad ④\end{cases}\quad ③-④,得x_0-\lambda_1x_2=\cfrac{25}{3}(1-\lambda_2)\quad ⑥$
$⑤⑦联立得,2x_0=-3-3\lambda_1-\cfrac{25}{3}+\cfrac{25}{3}\lambda_1$,$⑥⑧$联立得,$2x_0=3+3\lambda_2+\cfrac{25}{3}-\cfrac{25}{3}\lambda_2$
$\Rightarrow -3-3\lambda_1-\cfrac{25}{3}+\cfrac{25}{3}\lambda_1=3+3\lambda_2+\cfrac{25}{3}-\cfrac{25}{3}\lambda_2\Rightarrow \cfrac{16}{3}(\lambda_1+\lambda_2)=\cfrac{68}{3}\Rightarrow \lambda_1+\lambda_2=\cfrac{17}{4}$
这个结论可以推广至圆锥曲线(不包括抛物线):$F_1,F_2,$为椭圆(双曲线)两焦点, P为曲线上任意一点,直线$PF_1,PF_2$分别交曲线于A,B两点,若$\overrightarrow{PF_1}=\lambda_1\overrightarrow{F_1A},\overrightarrow{PF_2}=\lambda_1\overrightarrow{F_2B}$则$\lambda_1+\lambda_2$为定值.

1、椭圆第三定义:$A,B为椭圆上对称的两定点,P为动点,若则k_{PA},k_{PB}\exists ,则有k_{PA}k_{PB}=e^2-1=-\cfrac{b^2}{a^2}$
2、椭圆中垂径定理:$M为弦AB的中点,P为动点,若则k_{AB},k_{OM}\exists ,则有k_{AB}k_{OM}=e^2-1=-\cfrac{b^2}{a^2}$,
用点差法证明
2、l为椭圆上点M的切线:$若则k_{l},k_{OM}\exists ,则有k_{L}k_{OM}=e^2-1=-\cfrac{b^2}{a^2}$,
用点差法证明


椭圆的两个焦半径公式:
$①|PF_1|=a+ex_p;|PF_2|=a-ex_p;$左加右减
$②|PF|=\frac{b^2}{a-c\cos \theta } =\cfrac{b^2}{a}\cfrac{1}{1-e\cos \theta} $
$\theta为焦半径与F_1F_2之间的夹角$
①由椭圆第二定义得到;②式由余弦定理推导。


常用的最值范围
$①|PF_1|_{max}=a+c,|PF_1|_{min}=a-c;a+ex_p,x_p\in [-a,a]$
$②|\overrightarrow{PF_1}|\times|\overrightarrow{PF_2}|=a^2-e^2x_p^2\quad \in [b^2,a^2]$
$③\overrightarrow{PF_1}\cdot \overrightarrow{PF_2} =|OP|^2-|OF_2|^2\in [b^2-c^2,b^2]$
(极化恒等式)
$④\angle F_1PF_{2max}\Rightarrow 顶点P在上下顶点时;\angle F_1PF_{2min}\Rightarrow 顶点P在左右顶点时。$


焦点三角形公式:
$S_{\triangle PF_1F_2}=b^2\tan \cfrac{\theta }{2}$
$\theta$ 为焦点三角形顶角,用余弦定理+三角形面积公式证之
双曲线的焦点三角形面积公式:$S_{\triangle PF_1F_2}=\cfrac{b^2}{\tan \cfrac{\theta }{2}}$


切线方程与切点弦方程
$①点P(x_0,y_0)在椭圆上,则过P点且与椭圆相切的直线方程为:\cfrac{x_0x}{a^2}+\cfrac{y_0y}{b^2}=1$
证明 见https://one.free.nf/index.php/archives/259/例二
$②若P(x_0,y_0)在椭圆外,则过点P作椭圆的两条切线,切点为P_1,P_2,则切点弦P_1P_2的直线方程为\cfrac{x_0x}{a^2}+\cfrac{y_0y}{b^2}=1$
这里的直线方程其实也是点P关于椭圆的极线方程。