分类 解析几何 下的文章

抛物线$y=x^2$上异于坐标原点$O$的两个不同的动点$A,B满足OA\perp OB.\triangle AOB$的面积是否存在最小值。若存在,请求出最小值;若不存在,请说明理由。
解:设$A(x_1,y_1)B(x_2,y_2)$直线AB的方程为$y=kx+m$,联立$\begin{cases} y=kx+m\\y=x^2\end{cases} \Rightarrow x^2-kx-m=0$
$x_1+x_2=k,x_1x_2=-m\quad \overrightarrow{OA} \cdot \overrightarrow{OB}=x_1x_2+y_1y_2=0$
$y_1y_2=(kx_1+m)(kx_2+m)=k^2x_1x_2+km(x_1+x_2)+m^2=-k^2m+k^2m+m^2=m^2$
$\overrightarrow{OA} \cdot \overrightarrow{OB}=x_1x_2+y_1y_2=-m+m^2=0\Rightarrow m=1或m=0舍去$
$故直线l_{AB}过定点(0,1),y=kx+1$
以直线的定点为界,将$\triangle AOB$分成左右两部分,故$S_{\triangle AOB}=\cfrac{1}{2}\times 1\times |x_1-x_2|=\cfrac{1}{2}\sqrt{k^2+4}\ge 1$


引申1.若直线$l与椭圆C:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)交于M,N$两点,A为椭圆的右顶点,且$AM\perp BN$.则直线$l过定点(\cfrac{e^2}{2-e^2}a,0)$
引申2.若直线$l与双曲线C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a\gt 0,b\gt 0)交于M,N$两点,A为双曲线的右顶点,且$AM\perp BN$.则直线$l过定点(\cfrac{e^2}{2-e^2}a,0)$
引申3.若直线$l与抛物线y^2=2px(p\gt 0)交于M,N$两点,A为抛物线顶点,且$AM\perp AN$.则直线$l过定点(2p,0)$

内准圆:$ A,B为椭圆/双曲线上两点, O为中心,且 OA\bot OB,过点 O作AB的垂线,垂足为H, |OH|为定值,$
$点H的轨迹为圆x^2+y^2=\cfrac{1}{\cfrac{1}{a^2}+\cfrac{1}{b^2}}=\cfrac{a^2b^2}{a^2+b^2},称为内准圆(PS:双曲线在离心率大于\sqrt{2}时才有内准圆),AB是内准圆的切线$
$性质1:\cfrac{1}{|OA|^2}+\cfrac{1}{|OB|^2}=\cfrac{1}{a^2}+\cfrac{1}{b^2}$
$证明:设椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1,|OA|=m,|OB|=n,A(m\cos \theta,m\sin \theta ),B(n\cos (\theta+\cfrac{\pi}{2}),n\sin(\theta+\cfrac{\pi}{2}))=(-n\sin \theta,n\cos \theta)$
$\cfrac{m^2\cos^2 \theta}{a^2}+\cfrac{m^2\sin^2 \theta }{b^2}=1\Rightarrow \cfrac{1}{m^2}=\cfrac{\cos^2 \theta}{a^2}+\cfrac{\sin^2 \theta }{b^2}$
$\cfrac{n^2\sin^2 \theta}{a^2}+\cfrac{n^2\cos^2 \theta }{b^2}=1\Rightarrow \cfrac{1}{n^2}=\cfrac{\sin^2 \theta}{a^2}+\cfrac{\cos^2 \theta }{b^2}$
$:\cfrac{1}{|OA|^2}+\cfrac{1}{|OB|^2}=\cfrac{1}{m^2}+\cfrac{1}{n^2}=\cfrac{1}{a^2}+\cfrac{1 }{b^2}\quad $
$性质2:垂足H的轨迹为 x^2+y^2=\cfrac{a^2b^2}{a^2+b^2}$
$证明(运用等面积代换),S_{\triangle OAB}=\cfrac{1}{2}|OA||OB|=\cfrac{1}{2}|AB||OH|\Rightarrow |OH|=\cfrac{|OA|OB|}{|AB|}$
$x^2+y^2=|OH|^2=\cfrac{|OA|^2|OB|^2}{|AB|^2}=\cfrac{|OA|^2|OB|^2}{|OA|^2+|OB|^2}=\cfrac{1}{\cfrac{1}{|OA|^2}+\cfrac{1}{|OB|^2}}=\cfrac{a^2b^2}{a^2+b^2}$即直角三角形直角边与斜边高的关系


例1、直线交椭圆$\cfrac{x^2}{4}+\cfrac{y^2}{3}=1于A、B,过原点作垂线交A,B于点P,|OP|=1$,是否存在直线$l使|AP||PB|=1$成立?若存在,求出$l$的方程;若不存在,请说明理由。
$解:由射影定理|AP||PB|=|OP|^2,可知OA\perp OB,$然后用证明性质1的方法,证明$\cfrac{1}{OA^2}+\cfrac{1}{OB^2}=\cfrac{1}{a^2}+\cfrac{1}{b^2}=\cfrac{1}{4}+\cfrac{1}{3}=\cfrac{7}{12}$再用等面积法,得到直角三角形斜边上的高与两直角边的关系,得到$|OP|^2=\cfrac{a^2b^2}{a^2+b^2}=\cfrac{12}{7}$
这与$|OP|=1矛盾,所以不存在符合题意的直线l$

---

例2、2009年山东设椭圆$E:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)过M(2,\sqrt{2}),N(\sqrt{6},1),O$为坐标原点。
①求E的方程;
②是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆E恒有两个交点$A、B,且OA\perp OB$?若存在,写出该圆的方程,并求$|AB|$的取值范围,若不存在,请说明理由。
解:①$\begin{cases} \cfrac{4}{a^2}+\cfrac{2}{b^2}=1\\ \cfrac{6}{a^2}+\cfrac{1}{b^2}=1\end{cases}\Rightarrow \begin{cases} \cfrac{x^2}{8}+\cfrac{y^2}{4}=1\end{cases}$
②设$|OA|=m,|OB|=n,|OA|的倾斜角为\theta,|OB|的倾斜角为\theta+\cfrac{\pi}{2}$
$A(m\cos \theta ,m\sin \theta),B[n\cos(\theta+\cfrac{\pi}{2}),n\sin (\theta+\cfrac{\pi}{2})]=(-n\sin \theta,n\cos \theta)$
$\begin{cases} \cfrac{(m\cos \theta)^2}{8}+\cfrac{(m\sin \theta)^2}{4}=1\\ \cfrac{(n\sin \theta)^2}{8}+\cfrac{(n\cos \theta)^2}{4}=1\end{cases}\Rightarrow \begin{cases} \cfrac{\cos^2 \theta}{8}+\cfrac{\sin^2 \theta}{4}=\cfrac{1}{m^2}=\cfrac{1}{|OA|^2}\\ \cfrac{\sin^2 \theta}{8}+\cfrac{\cos^2 \theta}{4}=\cfrac{1}{n^2}=\cfrac{1}{|OB|^2}\end{cases}$
$ \Rightarrow \cfrac{1}{|OA|^2}+\cfrac{1}{|OB|^2}=\cfrac{1}{8}+\cfrac{1}{4}=\cfrac{3}{8}$
$Rt\triangle OAB,AB边为所求内准圆的切线,O到AB的垂足M(x,y)为所求的圆上的一点。$
容易得到$x^2+y^2=|OM|^2=\cfrac{|OA|^2|OB^2|}{|AB|^2}=\cfrac{1}{\cfrac{1}{OA^2}+\cfrac{1}{OB^2}}=\cfrac{8}{3}$
$|AB|^2=|OA|^2+OB^2|=(|OA|^2+|OB^2|)\cdot [\cfrac{1}{|OA|^2}+\cfrac{1}{|OB|^2}]\cdot\cfrac{8}{3}$
$=\cfrac{a^2b^2}{a^2+b^2}\cdot (\cfrac{OA^2}{OB^2}+\cfrac{OB^2}{OA^2}+2)$
$令t=\cfrac{OA^2}{OB^2},t\in [\cfrac{b^2}{a^2},\cfrac{a^2}{b^2}],即t\in[\cfrac{1}{2},2]$
$AB^2=f(t)=\cfrac{a^2b^2}{a^2+b^2}\cdot (t+\cfrac{1}{t}+2)\quad $由对勾函数性质可知,$t=1时f(t)$取得最小值$f(t)=\cfrac{8}{3}\times 4=\cfrac{32}{3};t=\cfrac{1}{2}或2时,f(t)$取得最大值,$f(t)=\cfrac{8}{3}\times \cfrac{9}{2}=12$
$故|AB|取值范围[\cfrac{4}{3}\sqrt{6},2\sqrt{3}]$


$双曲线的内准圆设M,N在双曲线\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(b\gt a\gt 0)上,且有OM\perp ON,则:$
$①圆x^2+y^2=\cfrac{a^2b^2}{b^2-a^2}与直线MN相切,这里的圆称为双曲线的内准圆$
$②\cfrac{1}{|OM|^2}+\cfrac{1}{|ON|^2}=\cfrac{1}{a^2}-\cfrac{1}{b^2}为定值。$

双曲线的外准圆设双曲线$\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a\gt b\gt 0)外有一点P$,过点$P$的双曲线的两条切线相互垂直,则$P的轨迹是圆x^2+y^2=a^2-b^2$,这里的圆称为双曲线的外准圆,或者蒙日圆。

一、蒙日圆与双切线问题:
圆锥曲线的正交切线交点轨迹
在椭圆中,任意两条互相垂直的切相关的交点都在同一个圆上,它的圆心是椭圆中心,半径等于长、短半轴平方和的算术平均根,这个圆就是蒙日(Monge)圆,也叫外准圆
$(1)椭圆\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1的正交切线交点轨迹为x^2+y^2=a^2+b^2;$
$(2)双曲线\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1的正交切线交点轨迹为x^2+y^2=a^2-b^2;$
$(3)抛物线y^2=2px的正交切线交点轨迹为准线方程x=-\cfrac{p}{2};$
以上反之也成立。
2025-11-03T01:39:47.png
$设P(x_0,y_0),A(x_1,y_1),B(x_2,y_2)$
$设PA:y=k_1(x-x_0)+y_0;\qquad PB:PA:y=k_2(x-x_0)+y_0;\quad k_1k_2=-1$
$\begin{cases} y=k_1(x-x_0)+y_0\\ \quad \\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1\end{cases}\Rightarrow \begin{cases} y=k_1x+{\color{Red} (y_0-k_1x_0)}\\ \quad \\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1\end{cases}$
$\Rightarrow b^2x^2+a^2y^2-a^2b^2=0\Rightarrow b^2x^2+a^2[k_1(x-x_0)+y_0]^2-a^2b^2=0$
$\Rightarrow b^2x^2+a^2[k_1x+{\color{Red} (y_0-k_1x_0)} ]^2-a^2b^2=0$
$\Rightarrow b^2x^2+a^2[k_1^2x^2+2k_1{\color{Red} (y_0-k_1x_0)} x+{\color{Red} (y_0-k_1x_0)} ^2]-a^2b^2=0$
$\Rightarrow(a^2k_1^2+b^2)x^2+2k_1a^2{\color{Red} (y_0-k_1x_0)} x+a^2{\color{Red} (y_0-k_1x_0)} ^2-a^2b^2=0$

$\because \Delta =4k_1^2a^4(y_0-kx_0)^2-4a^2(a^2k_1^2+b^2)[(y_0-k_1x_0)^2-b^2]=0$
$\Rightarrow k_1^2a^2(y_0-kx_0)^2=(a^2k_1^2+b^2)[(y_0-k_1x_0)^2-b^2]$
$\Rightarrow k_1^2a^2(y_0-kx_0)^2=a^2k_1^2(y_0-k_1x_0)^2-a^2b^2k_1^2+b^2(y_0-k_1x_0)^2-b^4$
$\Rightarrow a^2b^2k_1^2+b^4=b^2(y_0-k_1x_0)^2$
$\Rightarrow a^2k_1^2+b^2=(y_0-k_1x_0)^2$
同理,联立 $\begin{cases} y=k_2(x-x_0)+y_0\\ \quad \\ \cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1\end{cases}\Rightarrow \bigtriangleup =0$解得$\Rightarrow a^2k_2^2+b^2=(y_0-k_2x_0)^2$
$显然k_1,k_2是关于k的一元二次方程a^2k^2+b^2=(y_0-kx_0)^2的两个根$
$a^2k^2+b^2=(y_0-kx_0)^2\Rightarrow (a^2-x_0^2)k^2+2x_0y_0k+b^2-y_0^2$
$\Rightarrow {\color{Red} k_1k_2=\cfrac{b^2-y_0^2}{a^2-x_0^2} =-1}\Rightarrow {\color{Red} b^2-y_0^2+a^2-x_0^2 =0 \Rightarrow x_0^2+y_0^2=a^2+b^2}$


$题目1、c在平面直角坐标系XOY中,已知圆O:x^2+y^2=25,圆C:x^2+(y-1)^2=r^2(0\lt r \lt 3),点P(-3,4),$
$M,N为圆O上异于点P的两点,若直线PM,PN与圆C都相切。$
$求证:当r变化时,直线MN的斜率为定值。$
$设M(x_1,y_1),N(x_2,y_2),P(-3,4)PM:y=k_1(x+3)+4,PN:y=k_2(x+3)+4$
$PM与x^2+(y-1)^2=r^2相切, 则有:$
$\cfrac{\left | 3k_1+3 \right | }{\sqrt{1+k_1^2} }=r{\color{Red} \quad直线与圆相切用圆心到直线的距离=r;直线与椭圆相切用\Delta=0} $
$\Rightarrow 9(k_1+1)^2=r^2(1+k_1^2)$
$同理,PN与x^2+(y-1)^2=r^2相切,则有:\Rightarrow 9(k_2+1)^2=r^2(1+k_2^2)$
$故k_1,k_2是关于k的一元二次方程\Rightarrow 9(k+1)^2=r^2(1+k^2)的两个根$
$得:(9-r^2)k^2+18k+9-r^2=0$
$k_1k_2=1\Rightarrow {\color{Red} \cfrac{y_1-4}{x_1+3} \cfrac{y_2-4}{x_2+3} =1\Rightarrow y_1y_2-4(y_1+y_2)+16=x_1x_2+3(x_1+x_2)+9}$
$设MN :y=kx+m与圆O联立,\begin{cases}y=kx+m \\\quad\\x^2+y^2=25 \end{cases}$
$\Rightarrow (1+k^2)x^2+2kmx+m^2-25=0,$
$x_1+x_2=\cfrac{-2km}{1+k^2};\qquad x_1x_2=\cfrac{m^2-25}{1+k^2}$
$y_1+y_2=kx_1+m+kx_2+m=\cfrac{-2k^2m}{1+k^2}+2m=\cfrac{2m}{1+k^2}$
$y_1y_2=(kx_1+m)(kx_2+m)=k^2x_1x_2+km(x_1+x_2)+m^2=\cfrac{k^2(m^2-25)}{1+k^2}+\cfrac{-2k^2m^2}{1+k^2}+m^2$
$=\cfrac{k^2m^2-25k^2-2k^2m^2+k^2m^2+m^2}{1+k^2}=\cfrac{m^2-25k^2}{1+k^2}$
$代入上式得:\cfrac{m^2-25k^2}{1+k^2} -4\cfrac{2m}{1+k^2}+16=3\cfrac{-2km}{1+k^2}+\cfrac{m^2-25}{1+k^2}+9$
$\Rightarrow m^2-25k^2-8m+7(1+k^2)=-6km+m^2-25\Rightarrow 9k^2-3km+4(m-4)=0$
$(3k-4)[3k-(m-4)]=0,解得k=\cfrac{4}{3},k=\cfrac{m-4}{3}$
$若k=\cfrac{m-4}{3},代入y=kx+m,得直线MN过(-3,4),舍去,故直线MN的斜率为定值\cfrac{4}{3}$


$题目2、2018年浙江高考,已知点P是y轴左侧(不含y轴)一点,抛物线C:y^2=4x上存在不同的两点A,B$
$满足PA,PB的中点均在C上。$
$(1)设AB中点为M,证明:PM垂直于y轴。$
$(2)若点P为半椭圆x^2+\cfrac{y^2}{4}=1(x\le 0)上的动点,求\triangle PAB面积的取值范围。$
$分析:设P(x_0,y_0),A(x_1,y_1),B(x_2,y_2),证2y_0=y_1+y_2即可$
$这里设AB的横坐标为x_1,x_2令问题变得得很复杂,不如直接利用AB在抛物线上这个约束条件。$
$即x_1=\cfrac{y_1^2}{4} ,x_2=\cfrac{y_2^2}{4}{\color{Red} \qquad点在抛物线上,只设一个坐标} $
$解:设P(x_0,y_0),A(\cfrac{y_1^2}{4},y_1),B(\cfrac{y_2^2}{4},y_2)$
$则PA的中点坐标(\cfrac{y_1^2}{8}+\cfrac{x_0}{2},\cfrac{y_1+y_0}{2})代入y^2=4x$
$\Rightarrow (\cfrac{y_0+y_1}{2})^2=4\cdot (\cfrac{y_1^2}{8} +\cfrac{x_0}{2} )\Rightarrow$
$y_{\color{Red} 1} ^2-2y_0y_{\color{Red} 1} +8x_0-y_0^2=0$
$同理PB中点可得:y_{\color{Red} 2} ^2-2y_0y_{\color{Red} 2} +8x_0-y_0^2=0$
$由此可见y_1,y_2是关于 y的方程{\color{Red} y} ^2-2y_0{\color{Red} y} +8x_0-y_0^2=0的两根。$
$y_1+y_2=2y_0,得证$


练习:
1、 已知圆O:$x^2+y^2=1$,若直线$y=kx+2$上总存在点P,使得过点P作圆O的两条切线相互垂直,则实数$k$的取值范围是:

由蒙日圆概念可知,P点的轨迹为$x^2+y^2=2$,由于P点又在直线$y=kx+2$上,即点P既在圆上又在直线上,也就是说直线与圆恒有公共点,即直线与圆相切或相交。依据点到直线的距离,可知圆心O到直线的距离$d\le r\Rightarrow \cfrac{2}{\sqrt{1+k^2}}\le \sqrt{2}\Rightarrow 1+k^2\ge 2 \Rightarrow k\ge 1或k\le -1$
另证P点轨迹为圆的过程:
$设P(x_0,y_0),切线PA的方程为:y-y_0=k_1(x-x_0) \Rightarrow y=k_1x+y_0-kx_0,$
$圆心(0,0)到直线的距离为1,\Rightarrow \cfrac{|y_0-k_1x_0|}{\sqrt{1+k_1^2} } =1\Rightarrow 1+k_1^2=(y_0-k_1x_0)^2$
$\Rightarrow (x_0^2-1)k_1^2-2x_0xy_0k_1+y_0^2-1=0$
$同理另一条切线也可得到(x_0^2-1)k_2^2-2x_0xy_0k_2+y_0^2-1=0$
$斜率是k_1,k_2关于k的方程(x_0^2-1)k^2-2x_0xy_0k+y_0^2-1=0的两个根,故k_1k_2=\cfrac{y_0^2-1}{x_0^2-1}=-1$


2、 给定椭圆C:$\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)$,称圆心在原点O半径为$\sqrt{a^2+b^2}$的圆是椭圆C的准圆,若椭圆C的一个焦点为$F(\sqrt{2},0)$,其短轴上的一个端点到F的距离为$\sqrt{3}$.
(1)求椭圆C的方程和其准圆方程。$\quad\cfrac{x^2}{3}+y^2=1,x^2+y^2=4$
(2)点P是椭圆C的准圆上的动点,过点P作椭圆的切线$l_1,l_2$交准圆于点MN;
$①当点P为准圆与y轨正半轴的交点时,求直线l_1,l_2的方程并证明l_1\bot l_2;$
$②求证线段MN的长为定值。$

$解:①当直线l_1,l_2中有一条斜率不存在时,不妨设l_1$不存在斜率,$l_1:x=\pm \sqrt{3},当l_1:x=\sqrt{3}时,l_1$与准圆交于点$(\sqrt{3},1)(\sqrt{3},-1)$,此时$l_2$为$y=1(或y=-1)$,显然$l_1与l_24垂直,同理可证l_1:x=-\sqrt{3},直线l_1,l_2$垂直。
$②当直线l_1,l_2中有一条斜率存在时,设P(x_0,y_0),其中x_0^2+y_0^2=4$
$设经过点P(x_0,y_0)与椭圆相切的直线为y=k(x-x_0)+y_0$
$\begin{cases}x^2+3y^2-3=0\\y=k(x-x_0)+y_0\end{cases}\Rightarrow x^2+3(kx+y_0-kx_0)^2-3=0$
$\Rightarrow (1+3k^2)x^2+6k(y_0-kx_0)x+3(y_0-kx_0)^2-3=0$
$\Rightarrow \Delta =[6k(y_0-kx_0)]^2-4(1+3k^2)\cdot [3(y_0-kx_0)^2-3]=0$
$\Rightarrow 3k^2(y_0-kx_0)^2=(1+3k^2)\cdot [(y_0-kx_0)^2-1]\Rightarrow $
$3k^2(y_0-kx_0)^2=(y_0-kx_0)^2-1+3k^2(y_0-kx_0)^2-3k^2$
$\Rightarrow (y_0-kx_0)^2-1-3k^2=0整理为{\color{Red} 以k为主元}的代数式$
$(3-x_0^2)k^2+2x_0y_0k+1-y_0^2=0$
$设直线l_1,l_2的斜率k_1,k_2,因为l_1,l_2$与椭圆相切,所以$k_1,k_2$是满足方程$(3-x_0^2)k^2+2x_0y_0k+1-y_0^2=0$
$\Rightarrow k_1k_2=\cfrac{1-y_0^2}{3-x_0^2}=\cfrac{1+x_0^2-4}{3-x_0^2}=-1\Rightarrow l_1\perp l_2$
$MN是准圆的直径,所以|MN|=4$
2025-11-13T09:31:58.png


3、 2020年杭州学军中学高三月考已知抛物线$C_1:y^2=2px(p\gt 0).圆C_2:(x-1)^2+y^2=r^2(r\gt 0)$,抛物线$C_1上的点到其准线的距离的最小值为\cfrac{1}{4}.$
(1)求抛物线$C_1$的方程和其准线方程。
(2)点$P(2,y_0)是抛物线C_1$在第一象限内一点,过点P作圆$C_2$的两条切线分别交抛物线$C_1$于$A,B(A,B异于点P),问是否存在圆C_2使AB$恰为其切线,若存在,求出r值;若不存在,说明理由。
$解:①由抛物线C_1上的点到其准线的距离的最小值为\cfrac{1}{4}.\Rightarrow \cfrac{p}{2}=\cfrac{1}{4}\Rightarrow p=\cfrac{1}{2},y^2=x,准线x=-\cfrac{1}{4}$
$②由①可得P(2,\sqrt{2}),假设存在C_2使得AB恰为其切线,设A(y_1^2,y_1)B(y_2^2,y_2),则经过PA的直线方程为:$
$y-\sqrt{2}=\cfrac{y_1-\sqrt{2}}{y_1^2-2}(x-2),即x-(y_1+\sqrt{2})y+\sqrt{2}y_1=0$
${\color{Red} 抛物线可以用两点式写出直线方程,区别于椭圆和双曲线要设方程}$
$由C_2(1,0)到PA的距离为r,得\cfrac{|1+\sqrt{2}y_1|}{\sqrt{1+(y_1+\sqrt{2})^2}}=r\Rightarrow r^2[1+(y_1+\sqrt{2})^2]=(1+\sqrt{2}y_1)^2$
$化简,得(2-r^2)y_1^2+2\sqrt{2}(1-r^2)y_1+1-3r^2=0$
$同理,得(2-r^2)y_2^2+2\sqrt{2}(1-r^2)y_2+1-3r^2=0$
$所以,y_1,y_2是方程(2-r^2)y^2+2\sqrt{2}(1-r^2)y+1-3r^2=0的两个不相等实根$
$故有y_1+y_2=-\cfrac{2\sqrt{2}(1-r^2)}{2-r^2}\qquad y_1y_2=\cfrac{1-3r^2}{2-r^2}$
$故l_{AB}:y-y_1=\cfrac{y_1-y_2}{y_1^2-y_2^2}(x-y_1^2)\Rightarrow (y-y_1)(y_1+y_2)=x-y_1^2\Rightarrow x-(y_1+y_2)y+y_1y_2=0$
$由C_2(1,0)到l_{AB}的距离为r,得r=\cfrac{|1+y_1y_2|}{\sqrt{1+(y_1+y_2)^2}}所以(1+\cfrac{1-3r^2}{2-r^2})^2=r^2+r^2[-\cfrac{2\sqrt{2}(1-r^2)^2}{2-r^2}]$
$(3-4r^2)^2=r^2(2-r^2)^2+8r^2(1-r^2)^2,化简,得r^6-4r^4+4r^2-1=0,即(r^2-1)(r^4-4r^2+1)=0$
$经分析知0\lt r\lt 1,因此r=\cfrac{\sqrt{5}-1}{2}$

$解题思路分析:设点(只设纵坐标), 圆心C_2到切线PA(含y_1和r),PB(含y_2和r),同构利用韦达定理,得到y_1与y_2与r的关系,$
$圆心C_2到切线AB(含y_1+y_2,y_1y_2和r)的距离为半径,得到的式子只含y_1+y_2,y_1y_2和r$

2025-11-13T10:54:52.png


4、2019年天津二模.椭圆C:$\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)$的离心率为$\cfrac{\sqrt{3}}{2}$,直线y=1与椭圆C两交点距离为8.
①求椭圆C的方程。
②设$R(x_0,y_0)$是椭圆C上支点,由原点O向圆$(x-x_0)^2+(y-y_0)^2=4$引两条切线,分别交椭圆C于点P,Q,若OP,OQ的斜率存在,并分别记为$k_1,k_2$,求证:$k_1k_2$为定值。
③在(2)条件下,试问$\left | OP \right | ^2+\left | OQ\right | ^2$是否为定值?若是,求之,若不是,请说明理由。
2025-11-12T07:31:22.png
解:$①\cfrac{x^2}{20}+\cfrac{y^2}{5}=1$
$②设OP、OQ的直线方程分别为y=k_1x,y_2=k_2x,由直线OP为圆R的切线,有\cfrac{|k_1x_0-y_0|}{\sqrt{1+k_1^2}}=2$
$\Rightarrow (x_0^2-4)k_1^2-2x_0y_0k_1+(y_0^2-4)=0$
$同理可得 (x_0^2-4)k_2^2-2x_0y_0k_2+(y_0^2-4)=0$
$\therefore k_1,k_2是关于k的方程 (x_0^2-4)k^2-2x_0y_0k+(y_0^2-4)=0的两个不相等实数根$
$x^2-4\ne 0,\Delta \gt 0,则k_1k_2=\cfrac{y_0^2-4}{x_0^2-4}由R(x_0,y_0)在椭圆上,即y_0^2=5-\cfrac{1}{4}x_0^2$
$\therefore k_1k_2=\cfrac{y_0^2-4}{x_0^2-4}=\cfrac{1-\cfrac{1}{4}x_0^2}{x_0^2-4}=-\cfrac{1}{4}$
$③设P(x_1,y_1),Q(x_2,y_2)\begin{cases}y=k_1x\\ \cfrac{x^2}{25}+\cfrac{y^2}{5}\end{cases}\Rightarrow \begin{cases}x_1^2=\cfrac{20}{1+4k_1^2}\\y_1^2=\cfrac{20k_1^2}{1+4k_1^2}\end{cases}\Rightarrow x_1^2+y_1^2=\cfrac{20(1+k_1^2)}{1+4k_1^2}$
$同理,得x_2^2+y_2^2=\cfrac{20(1+k_2^2)}{1+4k_2^2},由k_1k_2=-\cfrac{1}{4}$
$\left | OP \right | ^2+\left | OQ\right | ^2=x_1^2+y_1^2+x_2^2+y_2^2=\cfrac{20(1+k_1^2)}{1+4k_1^2}+\cfrac{20(1+k_2^2)}{1+4k_2^2}=\cfrac{20(1+k_1^2)}{1+4k_1^2}+\cfrac{20(1+\cfrac{1}{16k_1^2})}{1+\cfrac{1}{4k_2^2}}$
$=\cfrac{20(1+k_1^2)}{1+4k_1^2}+\cfrac{20(4k_1^2+\cfrac{1}{4})}{4k_1^2+1}=\cfrac{100k_1^2+25}{1+4k_1^2}=25$


练习:
1、设点$A(x_1,y_1)B(x_2,y_2)$是椭圆$\cfrac{x^2}{4}+y^2=1$上两点,若过点A,B且斜率分别为$-\cfrac{x_1}{4y_1},-\cfrac{x_2}{4y_2}$的两条直线交于点P,且直线OA,OB的斜率之积为$-\cfrac{1}{4},E(\sqrt{6},0),\left | PE\right |的最小值为(\qquad)$

难度较大,要求出$P的轨迹方程\cfrac{x^2}{8}+\cfrac{y^2}{2}=1$,要求用参数方程设出$A(2\cos \alpha ,\sin \alpha ),B(\cos\beta ,sin \beta )$,还要对椭圆方程求导,求出切线方程,才能得到A,B点为椭圆的切线PA,PB的切点。写出PA,PB的直线方程。
解:$A(2\cos \alpha ,\sin \alpha ),B(\cos\beta ,sin \beta ),对\cfrac{x^2}{4}+y^2=1两边求导,有\cfrac{2x}{4}+2y {y}' =0\Rightarrow {y}' =-\cfrac{x}{4y}$,可见PA,PB为椭圆的切线,A,B为切点。
则直线AP的方程为$\cfrac{x_1x}{4}+ y_1y=1 \Rightarrow \cfrac{ x\cos \alpha}{2}+ y\sin \alpha=1\quad ①$
同理BP的方程为$\cfrac{x_2x}{4}+ y_2y=1 \Rightarrow \cfrac{ x\cos \beta}{2}+ y\sin \beta=1\quad ②$
$①\cdot \sin \beta - ②\cdot \sin \alpha\Rightarrow x_P=\cfrac{2(\sin \beta -\sin \alpha)}{\sin (\beta -\alpha)}$
$①\cdot \cos \beta - ②\cdot \cos \alpha\Rightarrow y_P=\cfrac{\cos \beta -\cos \alpha}{\sin (\alpha-\beta)}$
$\cfrac{x_P^2}{4}+y_p^2=\cfrac{(\sin \beta -\sin \alpha)^2-(\cos \beta -\cos \alpha)^2}{\sin^2(\beta-\alpha)}=\cfrac{2-2\cos (\alpha-\beta) }{\sin^2(\beta-\alpha)}$
$又\because k_{OA}k_{OB}=\cfrac{\sin \alpha}{2\cos\alpha }\cdot \cfrac{\sin \beta}{2\cos\beta }=-\cfrac{1}{4}\Rightarrow \cos(\alpha-\beta )=0\Rightarrow \sin (\alpha-\beta )=\pm 1\Rightarrow \cfrac{x_P^2}{4}+y_p^2=2$
所以P点的轨迹方程为:$\cfrac{x^2}{8}+\cfrac{y^2}{2}=1,设P(2\sqrt{2}\cos \theta ,\sqrt{2}\sin \theta )到E(\sqrt{6},0)$的距离,
$|PE|=\sqrt{(2\sqrt{2}\cos \theta -\sqrt{6})^2+(\sqrt{2}\sin \theta )^2}=\sqrt{6\cos^2\theta -8\sqrt{3}\cos\theta +8}=|\sqrt{6}\cos\theta -2\sqrt{2}|$
$当\cos\theta=1,|PE|_{min}=2\sqrt{2}-\sqrt{6}$

2025-11-12T07:45:11.png
2、浙江2011年21题。已知抛物线$C_1:x^2=y,圆C_2:x^2+(y-4)^2=1$圆心为点M。
(1)求点$M$到抛物线$C_1$准线的距离。
(2)已知点$P是C_1$上一点(异于原点),过点$P$作圆$C_2$的两条切线,交抛物线$C_1$于$A,B$两点,若过$M,P$的直线$l$垂直于A,B,求$l$的方程。

3、
4、
5、
6、

${\color{Red} 弦的斜率与弦中点与原点连线的斜率之积为定值e^2-1} $
$例1、2017年新课标1之20题,不过椭圆\cfrac{x^2}{4}+y^2=1的点P(0,1) 的直线l交椭圆于A,B两点,若直线PA,PB的斜率之和为-1,证明l过定点。$
斜率双用前置知识一,${\color{Red}椭圆上两点 } (x_1,y_1)(x_2,y_2),$用点差法可得

$\begin{cases} \cfrac{x^2_1}{a^2} +\cfrac{y^2_1}{b^2}=1 \quad \\ \quad \\\cfrac{x^2_2}{a^2} +\cfrac{y^2_2}{b^2}=1 \end{cases}$
两式相差,得$\cfrac{y_1^2-y_2^2}{x_1^2-x_2^2} =-\cfrac{b^2}{a^2} =e^2-1$
${\color{Red} \Rightarrow \cfrac{y_1-y_2}{x_1-x_2}=(e^2-1)\cdot \cfrac{x_1+x_2}{y_1+y_2} } $

斜率双用前置知识二两点式的直线方程:$\cfrac{y_1-y}{x_1-x}=\cfrac{y_1-y_2}{x_1-x_2}\Rightarrow {\color{Red} x_1y_2-x_2y_1= x(y_2-y_1)+y(x_1-x_2)}$

$P(0,1)设A点坐标为(x_1,y_1),B(x_2,y_2),{\color{Red} PAB均在椭圆上,}$
${\color{Green} 由P(0,1),A(x_1,y_1)点差有:}k_{PA}=\cfrac{y_1-1}{x_1} =(e^2-1)\cdot \cfrac{x_1}{y_1+1}$
${\color{Green} 由P(0,1),B(x_2,y_2)点差有:}k_{PB}=\cfrac{y_2-1}{x_2} =(e^2-1)\cdot \cfrac{x_2}{y_2+1},即斜率的两种表示方式$
将斜率的两种表示“轮换”代入已知条件,即$k_{PA}+k_{PB}=-1$

$\begin{cases} \cfrac{y_1-1}{x_1}-\cfrac{1}{4}\cdot \cfrac{x_2}{y_2+1}=-1\\\quad \\ \cfrac{y_2-1}{x_2}-\cfrac{1}{4}\cdot \cfrac{x_1}{y_1+1}=-1 \end{cases}$

这里轮换的意思是,第一个斜率用直线表示,第二个斜率用椭圆表示。

化为整式得,$\begin{cases} 4(y_1y_2+y_1-y_2-1)-x_1x_2=-4x_1y_2-4x_1\\\quad \\ 4(y_1y_2+y_2-y_1-1)-x_1x_2=-4x_2y_1-4x_2 \end{cases}$
两式相减速,得$x_2y_1-x_1y_2=2(y_1-y_2)-(x_2-x_1)$
对比两点式的直线方程,${\color{Red} x_1y_2-x_2y_1= x(y_2-y_1)+y(x_1-x_2)},得直线过定点(2,-1)$


$例2、已知椭圆C:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)的离心率为\cfrac{\sqrt{2} }{2} ,$
$以C的短轴为直径的圆与直线y=ax+6相切。$

$(1)求C的方程;$
$(2)直线l:y=K(x-1)(k\ge 0)与C相交于A,B两点,过C上的点P作x轴的平行线相交线AB于点Q,$
$直线OP的斜率为{k}' (O为原点),\triangle APQ的面积为S_1.\triangle BPQ的面积为S_2.$
$若\left | AP \right | \cdot S_2=\left | BP \right | \cdot S_1,判断k\cdot {k}'是否为定值?并说明理由。$

解:$(1)\begin{cases} e=\cfrac{c}{a} =2\sqrt{2}\\ \cfrac{\left | 6 \right | }{\sqrt{a^2+1} }=b\\a^2=b^2+c^2 \end{cases}\Rightarrow \begin{cases}a=2\sqrt{2}\\b=2\\c=2\end{cases}$
则椭圆C的方程为:$\cfrac{x^2}{8}+\cfrac{y^2}{4}=1$
$(2)\cfrac{\left | AP \right | }{\left | BP \right | } =\cfrac{S_1}{S_2}=\cfrac{\frac{1}{2} \left | AP \right |\left | PQ \right |\sin\angle APQ}{\frac{1}{2} \left | BP \right |\left | PQ \right |\sin\angle BPQ}{\color{Red} \Rightarrow \sin\angle APQ=\sin\angle BPQ}$
而$\angle APQ+\angle BPQ=\angle APB\in(0,\pi),则\angle APQ=\angle BPQ\Rightarrow k_{PA}+k_{PB}=0$
${\color{Red}PAB三点在椭圆上 },设P(x_0,y_0),A(x_1,y_1),B(x_2,y_3),则有:$
${\color{Green} 由P(x_0,y_0),A(x_1,y_1)点差有:}k_{PA}:\cfrac{y_1-y_0}{x_1-x_0} =-\cfrac{1}{2} \cdot \cfrac{x_1+x_0}{y_1+y_0}$
${\color{Green} 由P(x_0,y_0),B(x_2,y_3)点差有:}k_{PB}:\cfrac{y_2-y_0}{x_2-x_0} =-\cfrac{1}{2} \cdot\cfrac{x_2+x_0}{y_2+y_0}$
$\Rightarrow \begin{cases} \cfrac{y_1-y_0}{x_1-x_0}-\cfrac{1}{2}\cdot \cfrac{x_2+x_0}{y_2+y_0}=0\\ \quad \\ \cfrac{y_2-y_0}{x_2-x_0} -\cfrac{1}{2} \cdot\cfrac{x_1+x_0}{y_1+y_0} =0\end{cases}$
$\Rightarrow \begin{cases}2(y_1-y_0)(y_2+y_0)=(x_2+x_0)(x_1-x_0)\\ \quad \\2(y_2-y_0)(y_1+y_0)=(x_1+x_0)(x_2-x_0) \end{cases}$
$\Rightarrow \begin{cases}2y_1y_2+2y_0y_1-2y_0y_2-2y_0^2=x_0x_1+x_1x_2-x_0x_2-x_0^2\\ \quad \\2y_1y_2+2y_0y_2-2y_0y_1-2y_0^2=x_0x_2+x_1x_2-x_0x_1-x_0^2 \end{cases}$
$两式相差,得2y_0(y_1-y_2)=x_0(x_1-x_2)$
$k\cdot {k}' =\cfrac{y_1-y_2}{x_1-x_2} \cdot \cfrac{y_0}{x_0}=\cfrac{1}{2} $
$说明:题目中没有直接告诉你k_{PA}+k_{PB}=0,这就是押轴题目的套路,拐一个弯而已$


$例3、双曲线C:\cfrac{x^2}{a^2}-\cfrac{y^2}{b^2}=1(a\gt b\gt b\gt 0)的左顶点为A,焦距为4,$
$过右焦点F作垂直于实轴的直线交C于B,D两点,且\triangle ABD是直角三角形。$
$(1)求双曲线C的方程;$
$(2)M、N是双曲线C右支上的两动点,设直线AM,AN的斜率分别为k_1,k_2,若k_1k_2=-2,$
$求点A到直线MN的距离d的取值范围。$

$(1)解:\begin{cases} 2c=4\\ \cfrac{b^2}{a}=a+c\\a^2+b^2=c^2 \end{cases}\Rightarrow \begin{cases} c=2,\\a=1, \\b=\sqrt{3}\end{cases}$
$\Rightarrow x^2-\cfrac{y^2}{3}=1$
$(2)A(-1,0),设M(x_1,y_1),N(x_2,y_2),$
因为${\color{Red} 弦的斜率与弦中点与原点连线的斜率之积为定值e^2-1}$
${\color{Green} 由A(-1,0),M(x_1,y_1)点差有},k_{AM}=k_1=\cfrac{y_1}{x_1+1}=\cfrac{b^2}{a^2}\cdot \cfrac{x_1-1}{y_1}$
${\color{Green} 由A(-1,0),N(x_2,y_2)点差有}, k_{AN}=k_2=\cfrac{y_2}{x_2+1}=\cfrac{b^2}{a^2}\cdot \cfrac{x_2-1}{y_2}$
$\Rightarrow \begin{cases} \cfrac{y_1}{x_1+1}\cdot\cfrac{3x_2-3}{y_2}=-2 \\\cfrac{y_2}{x_2+1}\cdot\cfrac{3x_1-3}{y_1}=-2 \end{cases}$
$\Rightarrow \begin{cases} 2y_2(x_1+1)+3y_1(x_2-1)=0\\\quad \\2y_1(x_2+1)+3y_2(x_1-1)=0\end{cases}\Rightarrow \begin{cases} 2x_1y_2+2y_2+3x_2y_1-3y_1=0 \\ \quad \\2x_2y_1+2y_1+3x_1y_2-3y_2=0 \end{cases}$
两式相减,得$x_1y_2-x_2y_1=5(y_2-y_1)$
对比直线两点式的变形:
${\color{Green} \cfrac{y_1-y_2}{x_1-x_2} =\cfrac{y_1-y}{x_1-x} \Rightarrow x_1y_2-x_2y_1=x(y_2-y_1)+y(x_1-x_2)}$
可知直线MN过定点$(5,0)$
直线MN过定$(5,0)仅与双曲线右支有两交点的斜率为渐近线内,即倾斜角\alpha \in (\cfrac{\pi}{3},\cfrac{2\pi}{3} )$
$d\in (6\sin \cfrac{\pi}{3} ,6]即d\in (3\sqrt{3} ,6]$


$例4、已知点A(2,1)在双曲线C:\cfrac{x^2}{a^2}+\cfrac{y^2}{a^2-1}=1(a\gt 1)$上,直线$l交C于P,Q两点,直线AP,AQ$的斜率之和为$0$.
$①求l的斜率。$
$②若\tan \angle PAQ=2\sqrt{2},求\triangle PAQ的面积$

$(1)依题意,有\cfrac{2^2}{a^2} -\cfrac{1}{a^2-1} =1\Rightarrow a=\sqrt{2}$
$双曲线C方程为:\cfrac{x^2}{2} -y^2=1$
$设P(x_1,y_1),Q(x_2,y_2),根据点差法有:$
$\begin{cases} \cfrac{y_1-1}{x_1-2}=\cfrac{x_1+2}{2(y_1+1)} \\ \quad \\ \cfrac{y_2-1}{x_2-2}=\cfrac{x_2+2}{2(y_2+1)}\end{cases}$
$k_{AP}+k_{AQ}\Rightarrow \begin{cases} \cfrac{y_1-1}{x_1-2}+\cfrac{x_2+2}{2(y_2+1)}=0 \\ \quad \\ \cfrac{y_2-1}{x_2-2}+\cfrac{x_1+2}{2(y_1+1)}=0 \end{cases}$
$\Rightarrow\begin{cases} y_1y_2+\frac{1}{2}x_1x_2 -(y_2-y_1)-(x_2-x_1)-3=0 \\ \quad \\ y_1y_2+\frac{1}{2}x_1x_2 -(y_1-y_2)-(x_1-x_2)-3=0 \end{cases}$
两式相减,并整理得:$y_2-y_1=-(x_2-x_1)\Rightarrow k_{PQ}=-1$
(2)$\begin{cases} \tan \angle PAQ=2\sqrt{2}\\ \quad \\ k_{AP}+k_{AQ}=0\end{cases}\Rightarrow \begin{cases} k_{AP}=-\sqrt{2} \\\quad \\k_{AQ}=\sqrt{2} \end{cases}$
设$\overrightarrow{AP}=\lambda (1,-\sqrt{2} )\Rightarrow P(2+\lambda,1-\sqrt{2} \lambda),代入曲线C得,\lambda=\cfrac{4+4\sqrt{2} }{3}$
设$\overrightarrow{AQ}=\mu (1,\sqrt{2} )\Rightarrow P(2+\mu ,1+\sqrt{2} \mu ),代入曲线C得,\mu =\cfrac{4-4\sqrt{2} }{3}$
$s_{\triangle PAQ}={\color{Red} \cfrac{1}{2}\overrightarrow{AP} \cdot \overrightarrow{AQ} \tan \angle PAQ} =\cfrac{1}{2}\lambda\mu (1,-\sqrt{2})(1,\sqrt{2})\tan \angle PAQ=\cfrac{16}{9}\sqrt{2}$


练习:
1、$椭圆C:\cfrac{x^2}{4}+\cfrac{y^2}{3}=1左顶点为A,不过A点斜率为k的直线与椭圆C交于M、N两点,$
$记AM,AN的斜率为k_1,k_2,k_1+k_2=\cfrac{3}{k},证明l过定点$
$解:A(-2,0),M(x_1,y_1),N(x_2,y_2)$
$点差法:\begin{cases}\cfrac{y_1}{x_1+2} \cdot \cfrac{y_1}{x_1-2}=-\cfrac{3}{4}\\ \cfrac{y_2}{x_2+2} \cdot \cfrac{y_2}{x_2-2}=-\cfrac{3}{4} \end{cases}\Rightarrow\begin{cases} \cfrac{y_1}{x_1+2}-\cfrac{3}{4}\cdot \cfrac{x_2-2}{y_2}=\cfrac{3}{k}\\ \cfrac{y_2}{x_2+2}-\cfrac{3}{4}\cdot \cfrac{x_1-2}{y_1}=\cfrac{3}{k}\end{cases}$
$两式相减,得x_1y_2-x_2y_1=k(x_1-x_2)-2(y_2-y_1)$
$对比直线两点式的变形,可得,直线l过点(-2,k)$
$y-k=k(x+2)\Rightarrow y=k(x+3),直线过定点(-3,0)$

1.斜率之积为定值
大家还记得这道题的考点吗:$椭圆 \cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 上存在三点A(x_0,y_0),M,N,且满足k_{AM}k_{AN}=\lambda ,$
$\lambda \ne\cfrac{a^2}{b^2},那么直线过定点P(tx_0,-ty_0)(t=\cfrac{a^2\lambda +b^2}{a^2\lambda -b^2})$。
证明方法,用平移齐恣法。
2.斜率之和为定值
下面让我们转换视角,看看斜率之和为定值的情况:
$椭圆\cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 上存在三点A(x_0,y_0),M,N,且满足k_{AM}+k_{AN}=\lambda (\lambda \ne0),$
$那么直线过定点P(x_0-\cfrac{2y_0}{\lambda},-y_0+\cfrac{2(e^2-1)x_0}{\lambda})=(x_0-\cfrac{2y_0}{\lambda},-y_0-\cfrac{2b^2x_0}{a^2\lambda})$。
$证明:记k_1=k_{AM},k_2=k_{AN}$
$作平移变换:\begin{cases} {x}'=x-x_0\\\quad\\{y}'=y-y_0 \end{cases}\Rightarrow \begin{cases} x={x}'+x_0\\\quad \\y={y}'+y_0 \end{cases}$
$使得A(x_0,y_0)成为新坐标系的原点{A}'(0,0)$
$\cfrac{x^2}{a^2}+ \cfrac{y^2}{b^2}=1 \Rightarrow \cfrac{({x}'+x_0)^2}{a^2}+ \cfrac{({y}'+y_0)^2}{b^2}=1$
$a^2{y}'^2+2(b^2x_0{x}'+a^2y_0{y}')+b^2{x}'^2=0$
$平移后的直线{M}'{N}':m{x}'+n{y}'=1,上式一次项乘上m{x}'+n{y}',$
$a^2{y}'^2+2(b^2x_0{x}'+a^2y_0{y}')(m{x}'+n{y}')+b^2{x}'^2=0$
$\Rightarrow a^2(1+2ny_0){y}'^2+2(nb^2x_0+ma^2y_0){x}'{y}'+b^2(1+2mx_0){x}'^2=0$
$除以{x}'^2,得a^2(1+2ny_0)\cfrac{{y}'^2}{{x}'^2}+2(nb^2x_0+ma^2y_0)\cfrac{{y}'}{{x}'}+b^2(1+2mx_0)=0$
$\Rightarrow a^2(1+2ny_0){k}'^2+2(nb^2x_0+ma^2y_0){k}'+b^2(1+2mx_0)=0$
$由韦达定理,得{k_1}' +{k_2}' =-\cfrac{2(nb^2x_0+ma^2y_0)}{a^2(1+2ny_0)},{k_1}' {k_2}' =\cfrac{b^2(1+2mx_0)}{a^2(1+2ny_0)}$


1.斜率之积为定值:
${k_1}' {k_2}' =\cfrac{b^2(1+2mx_0)}{a^2(1+2ny_0)}=\lambda:t=\cfrac{b^2}{a^2\lambda},$
$则:t(1+2mx_0)=1+2ny_0\Rightarrow n=\cfrac{t(1+2mx_0)-1}{2y_0}$
$所以,m{x}'+n{y}'=1\Rightarrow m{x}'\cfrac{t(1+2mx_0)-1}{2y_0}{y}'=1$
$因为 m是设出来的参数,而我们要找的是直线 {M}'{N}'所过的定点,也就是要找到关于$
${x}',{y}'的恒等式,那就要消掉参数m,也就是让和 m相乘的式子等于 0,$
所以整理式子得:$ m({x}'+\cfrac{x_0t}{y_0}{y}')+\cfrac{t-1}{2y_0}{y}'=1$,
$\begin{cases} \cfrac{t-1}{y_0}{y}'=0\\ \quad \\{x}'+\cfrac{x_0t}{y_0}{y}'=0\end{cases}$
$\Rightarrow \begin{cases} {y}'=\cfrac{2y_0}{t-1}\\ \quad \\{x}'=\cfrac{2x_0t}{1-t}\end{cases}再代入 \begin{cases} x={x}'+x_0\\ \quad \\y={y}'+y_0\end{cases}\Rightarrow $
$\begin{cases} x=\cfrac{2x_0t}{1-t}+x_0=\cfrac{t+1}{1-t}x_0=\cfrac{x_0(b^2+\lambda a^2)}{a^2\lambda -b^2}\\ \quad \\y=\cfrac{2y_0}{t-1}+y_0=\cfrac{t+1}{t-1}y_0=\cfrac{y_0(b^2+\lambda a^2)}{-(a^2\lambda -b^2)}\end{cases}\Rightarrow$

$也就是说直线MN过定点P(\cfrac{x_0(b^2+\lambda a^2)}{a^2\lambda -b^2},\cfrac{y_0(b^2+\lambda a^2)}{-(a^2\lambda -b^2)})$

2.斜率之和为定值$\lambda$
$斜率之和{k_1}' +{k_2}' =-\cfrac{2(nb^2x_0+ma^2y_0)}{a^2(1+2ny_0)}=\lambda:记t=\cfrac{b^2}{a^2}$
$则:nb^2x_2+ma^2y_0=\cfrac{\lambda a^2(1+2ny_0)}{-2}\Rightarrow m=\cfrac{\lambda(\cfrac{1}{2}+ny_0)+ntx_0}{-y_0},$
$m{x}'+n{y}'=1,所以,\Rightarrow \cfrac{\lambda(\cfrac{1}{2}+ny_0)+ntx_0}{-y_0}{x}'+n{y}'=1$
$因为 n是设出来的参数,而我们要找的是直线 {M}'{N}'所过的定点,也就是要找到关于$
${x}',{y}'的恒等式,那就要消掉参数n,也就是让和 n相乘的式子等于 0,$
所以,整理式子得:$n[{y}'-(\lambda+\cfrac{tx_0}{y_0}{x}')]-\cfrac{\lambda}{2y_0}{x}'=1$
$\begin{cases} {x}'=-\cfrac{2y_0}{\lambda } \\{y}'=-2(y_0+\cfrac{tx_0}{\lambda } ) \end{cases}$再代入$\begin{cases} x={x}'+x_0\\ \quad \\y={y}'+y_0\end{cases}\Rightarrow $
$\begin{cases} x=-\cfrac{2y_0}{\lambda } +x_0\\ \quad \\y=-2(y_0+\cfrac{tx_0}{\lambda } )+y_0\end{cases}$
也就是说直线MN过定点$P(x_0-\cfrac{2y_0}{\lambda},-y_0+\cfrac{2(e^2-1)x_0}{\lambda})=(x_0-\cfrac{2y_0}{\lambda},-y_0-\cfrac{2b^2x_0}{a^2\lambda})$