?v=1.1

分类 三角函数 下的文章

$1、函数f(x)=\cfrac{2\tan x}{1-\tan^2 x}的最小正周期是(\qquad)$
$A.\cfrac{\pi}{4}\quad B.\cfrac{\pi}{2}\quad C.\pi \quad D.2\pi$
$解:考查f(x)与\tan 2x的定义域,类似y=\cfrac{x^2}{x}=x$
$ 应用倍角公式化简得到 f(x)=\cfrac{2\tan x}{1-\tan^2 x}=\tan 2x ,\tan 2x的周期为\cfrac{\pi}{2},且在x=k\pi \pm\cfrac{\pi}{2}有定义,$
$但f(x)在x=k\pi \pm\cfrac{\pi}{2}处无定义,亦即f(x)化简后扩大了定义域,根据周期函数的对称性,$
故周期为$\pi$

2026-01-02T01:48:42.png

$2、2026年T8联考第15题,在\triangle ABC中,角A,B,C所对边分别为a,b,c,且满足\cos^2\cfrac{A}{2}=\cfrac{b+c}{2c}.$
$①求角C的大小。直角,第二问初中要求$
$②若点D在AB边上,且满足AB=3AD,求\cfrac{\tan A}{\tan \angle ACD}$

--

${\color{Red} 3、} 已知函数f(x)\begin{cases} e^x(2x-1),\quad x\gt 0,\\k(x+1),\quad x\lt 0\end{cases},g(x)=f(x)+f(-x),$
$若函数g(x)恰好有4个零点,则实数k的取值范围是(\qquad)$
$A.(-\infty,1)\quad B.(1,4e^{\cfrac{3}{2}})\quad C.(4e^{\cfrac{3}{2}},+\infty)\quad D.(1,+\infty)$
$令g(x)=0,即f(x)=-f(-x),-f(-x)即是f(x)的中心对称图形。即x\gt 0时e^x(2x-1)与 k(x-1)有两点交点,相切时临界$
$x\gt 0時,{\color{Red}{f}' (x)=e^x(2x+1) } ,设(x_0,y_0)是两曲线的切点,\begin{cases} y_0=k(x_0-1)\qquad \qquad\quad ①\\y_0=e^{x_0}(2x_0-1)\quad\qquad\quad ②\\k={f}'(x_0)=e^{x_0}(2x_0+1)\quad ③\end{cases}$
$ ③代入①,①②左边相等,2x_0-1=(2x_0+1)(x_0-1)\Rightarrow x_0=\cfrac{3}{2},x_0=0(舍去),回代③式k\gt 4e^{\cfrac{3}{2}}$


$4、已知a\gt 0,b\gt 0,\sqrt{ab}=\cfrac{1}{a}+\cfrac{1}{b},则\cfrac{1}{\log_a 2}+\cfrac{1}{\log_b 2}最小值是(\qquad)$
$A.3\quad B.2\quad C.\sqrt{2}\quad D.1$


$5、已知函数f(x)=(x+a)(2^x-b),若f(x)\ge 0恒成立,则b+2^a的最小值是(\qquad)$
$A.-2\quad B.0\quad C.\sqrt{2}\quad D.2$


$6、等差数列\{a_n\}的前n项和为S_n,已知a_5=8,S_5=20,设b_n=\cfrac{\sin 2}{\cos a_n\cos a_{n+1}},则数列\{b_n\}的前n项和为$_
$解:\because a_n=a_1+(n-1)d=a_n-(n-1)d;S_n=na_1+\cfrac{1}{2}n(n-1)d=na_n-\cfrac{1}{2}n(n-1)d$
$\therefore S_5=na_5-\cfrac{1}{2}\times 5\times 4\times d\Rightarrow 20=40-10d,d=2$
$b_n=\cfrac{\sin 2}{\cos a_n\cos a_{n+1}}=\cfrac{\sin (a_{n+1}-a_n)}{\cos a_n\cos a_{n+1}}=\cfrac{\sin a_{n+1}\cos a_n-\cos a_{n+1}\sin a_n}{\cos a_n\cos a_{n+1}}=\tan a_{n+1}-\tan a_n$
$T_n=b_1+b_2+b_3+\cdots +b_n=\tan a_{n+1}-\tan a_1$

$作业:已知数列\{a_n\}中,a_2=1,设S_n为\{a_n\}的前n项和,2S_n=na_n$
$(1)求\{a_n\}的通项公式;$
$(2)设b_n=\cfrac{\sin 1}{\cos (a_n+1)\cos (a_{n+1}+1)},则数列\{b_n\}的前n项和T_n$


$7、已知数列\{a_n\}的前n项和为S_n.且满足a_1=-5,a_n=\cfrac{S_n}{n}+2(n-1),$
$若对于任意n\in N^*,\lambda\le S_n怛成立,则实数\lambda的取值范围是(\quad )$
$A.(-\infty,-6]\quad B.(-\infty,-5]\quad C.(-\infty,-3]\quad D.(-\infty,-2]$


${\color{Red} 8、}共零点变形题,x(\ln x+2)\le ax^2+\cfrac{2}{a}\ln x对\forall x\ge e恒成立,则实数a的取值范围是(\qquad)$
$a\lt 0(舍去)因为右边等式为负数。a\gt 0时,x\ln x+2x-ax^2-\cfrac{2}{a}\ln x\le 0\Rightarrow (x-\cfrac{2}{a})\ln x+x(2-ax)\le 0$
$\Rightarrow (ax-2)\ln x-ax(ax-2)\le 0\Rightarrow (ax-2)(\ln x-ax)\le 0$
$①容易得到a\ge \cfrac{1}{e}时,ln x\le ax,即ln x-ax\le 0,此时只要ax-2\ge 0即可,\because x\gt e,\Rightarrow a\ge\cfrac{2}{x}\Rightarrow a\ge \cfrac{2}{e}$
$②0\lt a\lt \cfrac{1}{e},\because \quad x\gt e, ⑴e\lt x \lt x_0,\ln x-ax\ge 0;⑵x\gt x_0,\ln x -ax\le 0,此时y=ax-2与y=\ln x-ax共零点x_0。$
$\ln x_0=ax_0=2,\Rightarrow x_0=e^2,x\in [e,e^2],ax-2\le 0,\ln x-ax\ge 0,(ax-2)(\ln x-ax)\le 0;$
$x\gt e^2,ax-x\ge 0,\ln x-ax\le 0,\Rightarrow (ax-2)(\ln x-ax)\le 0$
$综上述,a\in \{e^2\}\cup [\cfrac{1}{e},+\infty)$


${\color{Red} 9、}若关于x的不等式ax^2-ax\ln a-e^x\ln x\gt 0对\forall x\in (0,1)恒成立,则实数a的取值范围为(\qquad)$
$解:ax^2-ax\ln a-e^x\ln x\gt 0\Rightarrow x^2-x\ln a-\cfrac{e^x}{a}\ln x\gt 0\Rightarrow x(x-\ln a)\gt e^{x-\ln a}\ln x\Rightarrow$
$\cfrac{x-\ln a}{e^{x-\ln a}}\gt \cfrac{\ln x}{x}\quad 令f(x)=\cfrac{x}{e^x},上式等价于f(x-\ln a)\gt f(\ln x)\quad \forall x\in (0,1),\ln x\lt 0,,\Rightarrow x-\ln a\gt \ln x$
$x-\ln x\gt \ln a\Rightarrow \ln a\lt x-\ln x\quad (x\in (0,1)),易求导得x-\ln x在(0,1)单调递减$
$(x-\ln x)_{max}=1,a\le 1$

${\color{Red}key: 若知道角所在的象限,及\sin \cos \tan 中的任意一个,另外两个便可求得。 } $
$若A+B+C=k\pi,则\tan A+\tan B+\tan C=\tan A\tan B\tan C$
利用诱导公式(互补公式)和两角和的正切公式证明:
${\color{Red} \because A+B+C=k\pi } \Rightarrow A+B=k\pi -C,\tan (A+B)=\tan (k\pi -C)=-\tan C$
${\color{Red} \therefore } \tan (A+B)=\cfrac{\tan A+\tan B}{1-\tan A\tan B} =-\tan C,去分母,得$
$\tan A+\tan B+\tan C=\tan A\tan B\tan C$
应用于必一254页,例12
2025-07-16T03:49:59.png

$解:\tan A:\tan B: \tan C=1:2:3 \Rightarrow 设比值为k,6k=6k^3,解k=0,\pm 1,k=1是唯一答案;\cfrac{1}{\sqrt{10} } $
2025-07-16T03:55:00.png
$\frac{1 }{2}\tan A=\frac{1}{3}\tan B=\frac{1}{6}\tan C,设\tan A=2k,11k=36k^3,2k=\frac{\sqrt{11} }{3}$
$\tan A=\cfrac{\sqrt{11} }{3} \Rightarrow \sin 2A=\cfrac{3\sqrt{11} }{10} $

2025-07-16T03:59:56.png
3与第一题一样
$\cfrac{\cos A}{ 6a} =\cfrac{\cos B}{3b} =\cfrac{\cos C}{2c} \Rightarrow 6\tan A=3\tan B=2\tan C$
2025-07-16T04:02:30.png
$\Rightarrow 2\tan B=\tan C+\tan A\Rightarrow \tan A\tan B\tan C=\tan A+\tan B+\tan C$
3
2025-07-16T04:04:49.png
$\tan A+\tan B+\tan C显然要将三个角化为一个角$。
$\sin A=2\sin B\sin C\Rightarrow \sin B \cos C+\cos B\sin C=2\sin B\sin C,显然要变成\tan ,那么两边除以\cos B\cos C$
$\Rightarrow \tan B+\tan C=2\tan B\tan C$
${\color{Red} \because \qquad } \tan A+\tan B+\tan C=\tan A\tan B\tan C{\color{Red} \Rightarrow } \tan A+2\tan B\tan C=\tan A\tan B\tan C$
$ \Rightarrow \tan A=(\tan A-2)\tan B\tan C$
$换元令\tan A=u,u=(u-2)\tan B\tan C\Rightarrow \tan B\tan C=\cfrac{u}{u-2} $
$\tan A+\tan B+\tan C=\tan A\tan B\tan C=u\cdot \cfrac{u}{u-2}$
$=\cfrac{(u-2+2)^2}{u-2}=u-2+\cfrac{4}{u-2}+4\ge 2\sqrt{4} +4$
C

$f(x)=A\sin (\omega x+\varphi )\quad (\omega \gt 0,\left | \varphi \right | \lt \cfrac{\pi}{2})的图像如图所示,f(x)$
2025-03-04T02:16:34.png
显然$A=2,f(0)=1$
$f(0)=1\Rightarrow \varphi=\cfrac{\pi}{6} ,故f(x)=2\sin (\omega x+\cfrac{\pi}{6}),令f(x)=0\Rightarrow \omega x+\cfrac{\pi}{6}=0 $
$\Rightarrow x=-\cfrac{\pi}{6\omega } \Rightarrow -\cfrac{\pi}{6\omega } -(-\pi)=\cfrac{T}{4} =\cfrac{2\pi}{4\omega }$
$\Rightarrow \pi=\cfrac{\pi}{2\omega } +\cfrac{\pi}{6\omega }\Rightarrow \omega =\cfrac{2}{3} $
$\therefore \quad f(x)=2\sin ( \cfrac{2}{3} x+\cfrac{\pi}{6})$

正切分式定理:
${\color{Red} \cfrac{\tan A}{\tan B}+ \cfrac{\tan A}{\tan C} =\cfrac{2a^2}{b^2+c^2-a^2} \qquad} $
${\color{Green} \cfrac{\tan B}{\tan A}+ \cfrac{\tan B}{\tan C} =\cfrac{2b^2}{a^2+c^2-b^2} \qquad} $
${\color{Violet} \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad } \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad $
$证明:\cfrac{\tan A}{\tan B}=\cfrac{\sin A\cos B}{\cos A \sin B}=\cfrac{a\times \cfrac{a^2+c^2-b^2}{2ac} }{b\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+c^2-b^2}{b^2+c^2-a^2} $
$\cfrac{\tan A}{\tan C}= \cfrac{\tan A}{\tan C}=\cfrac{\sin A \cos C}{\sin C \cos A}=\cfrac{a\times \cfrac{a^2+b^2-c^2}{2ab} }{c\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+b^2-c^2}{b^2+c^2-a^2} $
${\color{Red} 两式相加得证 } $
2025-02-20T08:49:56.png

2025-02-20T08:50:45.png

2025-02-20T08:49:56.png

2025-02-20T08:52:33.png
2025-02-20T08:53:39.png
${\color{Red} 此题要用到正切恒等式及中线长定理 } $
2025-02-20T08:55:35.png
${\color{Red} 此题用正切分式定理的证明过程或特殊值法,即分母相等 } $

在三角形$\bigtriangleup ABC中,有\sin ^2A-\sin ^2B=\sin (A+B)\sin (A-B)$
$\sin (A+B)\sin (A-B)=(\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B)$
$=\sin^2 A\cos^2 B-\cos^2 A\sin^2 B=\sin^2 A(1-\sin^2 B)-(1-\sin^2 A)\sin^2 B$
=$\sin ^2A-\sin ^2B$
2025-07-16T04:53:07.png
AD
2025-07-16T05:01:14.png
$\cfrac{3t-t}{1+3t^2} =\cfrac{1}{\sqrt{3} }$
2025-07-16T05:10:06.png
$\cfrac{2\sqrt{6}}{9 } $
2025-07-16T12:13:14.png
$A=\cfrac{\pi}{6}$

$第1题 、b^2-a^2=ac{\color{Red} \Rightarrow } \sin ^2B-\sin ^2A=\sin A \sin C\Rightarrow \sin (B+A) \sin (B-A)=\sin A\sin C$
${\color{Red} \Rightarrow } \sin (B-A)=\sin A {\color{Red} \Rightarrow }B-A=A,B=2A或B-A+A=\pi$
$锐角三角形{\color{Red} \Rightarrow } \begin{cases} 0\lt A\lt \cfrac{\pi}{2}\\ 0\lt 2A\lt \cfrac{\pi}{2}\\ 0\lt \pi -3A\lt \cfrac{\pi}{2}\end{cases}{\color{Red} \Rightarrow} A\in (\cfrac{\pi}{6}, \cfrac{\pi}{4})$
$c选\Rightarrow \cfrac{1}{\cfrac{1}{\tan A} -\cfrac{1}{\tan B} }=\cfrac{\sin A\sin 2A}{-\sin A}=-\sin 2A=\cfrac{\sin A\sin B}{\sin(A-B)} =-\sin 2A$
$D{\color{Green} \Rightarrow 2\sin C=\sin A+\sin B} \Rightarrow 2\sin (A+B)=\sin A+\sin B\Rightarrow 2\sin 3A=\sin A+\sin 2A$
$2[\sin A\cos 2A+\cos A\sin 2A]=\sin A(1+2\cos A)\Rightarrow 2[\sin A(2\cos ^2A-1)+2\sin A\cos ^2A)]=$
$2\sin A(4\cos ^2-1)=\sin A(1+2\cos A)\Rightarrow 8\cos ^2-2=1+2\cos A\Rightarrow 8t^2-2t-3=0,t=\cfrac{3}{4}$
$第二题:数量积,共起点或共终点,夹角就是三角形的顶角。\tan (B-C)展开是含Bc角的,可见是求BC两角的关系。$
$ca\cos B-ba\cos C=-\cfrac{1}{2}c^2\Rightarrow ac\cdot \cfrac{a^2+c^2-b^2}{2ac}-ab\cdot\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}c^2$
$\Rightarrow c^2-b^2=-\cfrac{1}{2} a^2 \Rightarrow \sin ^2C -\sin ^2B= -\cfrac{1}{2} \sin ^2A $
$\sin (C+B)\sin(C-B) =-\cfrac{1}{2} \sin ^2A\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin A$
$\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin (B+C)\Rightarrow \cfrac{3}{2} \sin C\cos B=\cfrac{1}{2}\cos C\sin B$
$3\tan C=\tan B$
$第三题:\frac{b}{a} -1=b^2-a^2\Rightarrow \frac{b-a}{a}= b^2-a^2\Rightarrow 1=a^2+ab$
$c=1\Rightarrow c^2=1\Rightarrow a^2=ab+b^2,此时与第一题相同了。$
$\sin ^2C-\sin ^2 A=\sin A\sin B\Rightarrow \sin (C+A)\sin (C-A)=\sin A\sin B\Rightarrow C=2A
B=\pi -3A$
$\sin 3A-\sin A=\sin (A+2A)-\sin A=3\sin A-4\sin^3 A-\sin A=2\sin A-4\sin^3 A$
$令\sin A=t,没有锐角的限制。\pi -3A\gt 0 \Rightarrow A\in (0,\frac{\pi }{6} ),2t-4t^3(t\in (0,\frac{\sqrt{3}}{2} )$
$第四题:2b^2-2a^2=c^2\Rightarrow 2\sin^2B -2\sin^2 A=\sin ^2C\Rightarrow 2\sin (B-A)=\sin C$
$2\sin (B-A)=\sin c=\sin (B+A)\Rightarrow \sin B\cos B=3\cos B\sin A\Rightarrow \tan B=3\tan A$
$设\tan A=t ,\tan (B-A)=\cfrac{3t-t}{1+3t^2} =\cfrac{2t}{1+3t^2}=\cfrac{2}{\frac{1}{t} +3t}$
$\Rightarrow \cfrac{1}{t} =3t\Rightarrow t=\frac{\sqrt{3} }{3} $