?v=1.1

zq3491 发布的文章

1-1、已知函数$(2)f(x)=e^x-ax-a^3$
$(1)当a=1时,求曲线y=f(x)在点(1,f(1))处的切线方程;$
$(2)若f(x)有极小值,且极小值小于0,求的取值范围$
(2)
${f}' (x)=e^x-a$
${\color{Red} 1^\circ } 若a\le 0,{f}' (x)\gt 0,f(x)\nearrow 无极值。\quad$
${\color{Red} 2^\circ } 若a\gt 0$
$\qquad {\color{Green} ①} 令{f}' (x)\lt 0,x\lt \ln a,f(x)\searrow ;$
$\qquad {\color{Green} ②} 令{f}' (x)\gt 0,x\gt \ln a,f(x)\nearrow ;$
$f(x)在x=\ln a处有极小值,f(\ln a)=a-a\ln a-a^3=-a(a^2+ln a-1)\lt 0$
$令g(a)=a^2+\ln a-1,{g}' (a)=2a+\cfrac{1}{a},g(a)\nearrow 且g(1)=0,a\gt 1,f(\ln a)\lt 0$


1-2、$f(x)=e^x(e^x-a)-a^2x\quad $
(1)讨论f(x)的单调性;
$(2)若f(x)\ge 0,求a的取值范围。$
$(1){f}' (x)=e^x(e^x-a)+e^x\cdot e^x-a^2=(2e^x+a)(e^x-a)$
${\color{Red} \quad 1^\circ }若a=0,{f}' (x)=2(e^x)^2\gt 0,f(x)在R\nearrow$
${\color{Red} \quad 2^\circ }若a\gt 0$
$\qquad {\color{Green}\quad ①} 令{f}' (x)\lt 0,x\lt \ln a,f(x)\searrow $
$\qquad {\color{Green} \quad ②} 令{f}' (x)\gt 0,x\gt \ln a,f(x)\nearrow $
${\color{Red} \quad 3^\circ }若a\lt 0$

$\qquad {\color{Green} \quad ①\quad } 令{f}' (x)\lt 0,x\lt \ln(-\cfrac{a}{2}),f(x)\searrow $
$\qquad {\color{Green} \quad ②\quad } 令{f}' (x)\gt 0,x\gt \ln(-\cfrac{a}{2}),f(x)\nearrow $
$(2)f(x)\ge 0 求a取值范围$
${\color{Red} \quad 1^\circ\quad } 若a= 0,{f} (x)=(e^x)^2\gt 0,恒成立;$
${\color{Red} \quad 2^\circ \quad } 若a\gt 0,f(x)_{min}=f(\ln a)=-a^2\ln a\ge 0\Rightarrow 0\lt a \lt 1$
${\color{Red}\quad 3^\circ\quad }若a\lt 0$
$f(x)_{min}=f(\ln(-\cfrac{a}{2}))=\cfrac{3}{4}a^2-a^2 \ln(-\cfrac{a}{2})\ge 0\Rightarrow -2e^{\cfrac{3}{4} }\le a\lt 0$
$\therefore -2e^{\cfrac{3}{4} }\le a\lt 1$


2、已知函数$f(x)=\cfrac{1}{3}x^3-\cfrac{1}{2}ax^2 ,a \in R $
$(1)当a=2时,求曲线y=f(x)在点(3,f(3))处的切线方程;$
$(2)设函数g(x)=f(x)+(x-a)\cos x-\sin x,讨论g(x)的单调性.$
$(2) g(x)=f(x)+(x-a)\cos x-\sin x$
${g}' (x)=x^2-ax+\cos x+(x-a)(-\sin x)-\cos x=(x-a)(x-\sin x)$
$欲判断 f(x)的正负,先判断 x-a和x-\sin x的单调性。x-a单调增,我们判断x-\sin x,$

$令h(x)=x-\sin x,{h}' (x)=1-\cos x\ge 0 ,h(x)\nearrow$
$且h(0)=0,故h(x)可以看作x,即用x代替上式中的x-\sin x$
${\color{Red} 1^\circ } 若a=0,{g}' (x)\ge 0,g(x)\nearrow,无极值。$
${\color{Red} 2^\circ } 若a\gt 0:$
$\qquad {\color{Green} ①} 当x\lt 0 时,{g}' (x)\gt 0,g(x)\nearrow;$
$\qquad {\color{Green} ②} 当0\lt x\lt a 时,{g}' (x)\lt 0,g(x)\searrow;$
$\qquad {\color{Green} ③}当x\gt a 时,{g}' (x)\gt 0,g(x)\nearrow;$
故$g(x)_{极大}=g(0)=-a,g(x)_{极小}=g(a)=\cfrac{1}{6}a^3-\sin a$
${\color{Red} 3^\circ } 若a\lt 0:$
$\qquad {\color{Green} ①} 当x\lt a时,{g}' (x)\gt 0,g(x)\nearrow;$
$\qquad {\color{Green} ②}当a\lt x\lt 0 时,{g}' (x)\lt 0,g(x)\searrow;$
$\qquad {\color{Green} ③}当x\gt 0 时,{g}' (x)\gt 0,g(x)\nearrow;$
$故g(x)_{极小}=g(0)=-a,g(x)_{极大}=g(a)=\cfrac{1}{6}a^3-\sin a$


3-1、已知函数$f(x)=(x-1)e^x-\cfrac{1}{2}ax^2 ,a\in R $
(1)当a=0时,求曲线y=f(x)在x=0处的切线方程;
(2)求函数f(x)在[1,2]上的最小值。
$(1)切线方程:y=-1$
$(2){f}' (x)=xe^x-ax=x(e^x-a)$
${\color{Red} 1^\circ } \quad若e-a\ge 0,即a\le e时,e^x-a\ge 0$
${f}' (x)\ge 0,f(x)在[1,2]\nearrow ,f(x)_{min}=f(1)=-\cfrac{1}{2} a$
${\color{Red} 2^\circ } \quad若e^2-a\le 0,即a\ge e^2,时,e^x-a\le 0$
${f}' (x)\le 0,f(x)在[1,2]\searrow ,f(x)_{min}=f(2)=e^2-2a$

${\color{Red} 3^\circ } \quad若e\lt a\lt e^2,{\color{Green} ①}当1\le x\lt\ln a时,{f}' (x)\lt 0,f(x)\searrow;$
$\qquad \qquad\quad\quad {\color{Green} ②}当\ln a\lt x\le 2时,{f}' (x)\gt 0,f(x)\nearrow;$
$f(x)_{min}=f(\ln a)=a(\ln a-1)-\cfrac{1}{2}a\ln ^2 a=-\cfrac{1}{2}a(\ln ^2a-2\ln a+2) $

综上所述:$f(x)_{min}=\begin{cases} -\cfrac{1}{2}a\qquad\qquad\qquad \qquad a\le e; \\ -\cfrac{1}{2}a(\ln ^2a-2\ln a+2) \quad,e\lt a\lt e^2 \\ e^2-2a \qquad \qquad a\ge e^2 \end{cases}$


3-2$已知函数f(x)=2x^3-a^2+b;$
$(1)讨论f(x)的单调性;$
$(2)是否存在a,b,使得f(x)在区间[0,1]的最小值-1为且最大值为1,若存在,求出的所有值;若不存在,说明理由。$
$(1){f}' (x)=6x^2-2ax=2x(3x-a)$
$\quad{\color{Red} 1^\circ } \quad若 \cfrac{a}{3}= 0,即a=0, {f}' (x)\ge 0,f(x)\nearrow$
$\quad{\color{Red} 2^\circ } \quad若 \cfrac{a}{3}\gt 0,即a\gt 0 ,{\color{Green} ①}当x\lt 0 ,{f}' (x)\gt 0,f(x)\nearrow$
$\qquad\qquad\qquad \qquad\qquad{\color{Green} ②} 当0\lt x\lt \cfrac{a}{3} ,{f}' (x)\lt 0,f(x)\searrow$
$\qquad\qquad\qquad\qquad\qquad{\color{Green} ③} 当x\gt \cfrac{a}{3} ,{f}' (x)\gt 0,f(x)\nearrow$
$\quad{\color{Red} 3^\circ } \quad若 \cfrac{a}{3}\lt 0,即a\lt 0 {\color{Green} ①}当x\lt\cfrac{a}{3} ,{f}' (x)\gt 0,f(x)\nearrow$
$\qquad\qquad\qquad \qquad\qquad{\color{Green} ②} 当\cfrac{a}{3} \lt x\lt 0 ,{f}' (x)\lt 0,f(x)\searrow$
$\qquad\qquad\qquad\qquad\qquad{\color{Green} ③} 当x\gt 0 ,{f}' (x)\gt 0,f(x)\nearrow$

---
(2)由(1)可知,
${\color{Red}(1) } a\le 0时,{f}' (x)\ge 0,f(x)在[0,1]\nearrow $
$\quad\quad \quad \begin{cases}f(0)=b=-1\\f(1)=2-a+b=1\end{cases}\Rightarrow \begin{cases} a=0\\b=-1\end{cases}$
${\color{Red} (2)} a\gt 0时,{\color{Green} a)} 若\cfrac{a}{3}\ge 1\Rightarrow a\ge 3,{f}' (x)\lt 0,f(x)\searrow $
$\qquad\qquad\qquad\begin{cases}f(0)=b=1\\f(1)=2-a+b=-1\end{cases}\Rightarrow \begin{cases} a=4\\b=1\end{cases}$
$\qquad\qquad\quad{\color{Green} b)} 若\cfrac{a}{3}\lt 1 时\Rightarrow 0\lt a\lt 3时$
$此时极小值一定在\cfrac{a}{3} 处,但最大值可能在两个端点之一$
$\qquad\qquad\begin{cases} f(\cfrac{a}{3})=2\cdot (\cfrac{a}{3})^3-(\cfrac{a}{3})^2+b=-1 \\ f(0)=b=1\end{cases} \Rightarrow a^3=54\Rightarrow a=3\sqrt[3]{3} \gt 3舍去$
$\qquad\qquad\begin{cases} f(\cfrac{a}{3} )=2\cdot (\cfrac{a}{3})^3-(\cfrac{a}{3})^2+b=-\cfrac{a^3}{27}+b=-1 \\ f(1)=2-a+b=1 \end{cases}\Rightarrow a^2=27\Rightarrow a=3\sqrt{3} \gt 3$

原题目:https://one.free.nf/usr/uploads/2025/onefile/derivative02.pdf
单调性问题:
6-1、$f(x)=\cfrac{1}{2}x^2-\ln x\quad {f}'(x)=x-\cfrac{1}{x}=\cfrac{x^2-1}{x} 递减区间:(0,1] $
6-2、$f(x)=e^x\cos x\quad {f}'(x)=e^x(\cos x+\sin x )=\sqrt[]{2}e^x\sin (x+\cfrac{\pi}{4} ) 递增区间:[0,\cfrac{3\pi}{4} ]$
7、③④
8-1、$y=x^3+x^2+mx+1是R上单调函数,求m。\begin{cases} {y}'=3x^2+2x+m \\\bigtriangleup =4-12m\le 0\end{cases}{y}'=3x^2+2x+m $
8-2、$f(x)=\cfrac{1}{3} x^3- x^2+ax-5在[-1.2]上不单调,求a。求导,画图分析{f}'(x)=x^2-2x+a \begin{cases} {f}'(1)\lt 0 \\{f}'(-1) \gt 0\end{cases}$
8-3、画图分析,$x^3-x$右侧增,必须保证直线$(2a-1)x+3a-4$减。
9、求导参变分离.$f(x)=2x-\cfrac{2}{x}-a\ln x \quad{f}' =2+\cfrac{2}{x^2}-\cfrac{a}{x} \le 0 ,x\in (1,2)$
$2x+\cfrac{2}{x}\le a ,对勾函数$
10、$10、f(x)=\log_{a}{(x^3-ax)}在(-\cfrac{1}{2} ,0)单调增,\begin{cases}\qquad a\gt1 \\3x^2-a\ge0\end{cases}\quad$或$\begin{cases}0\lt a\lt1 \\3x^2-a\le0\end{cases}\quad $
11-1、$f(x)=e^x(\cos x-a)\quad {f}' (x)=e^x(\cos x-a -\sin x)\Rightarrow a\ge \cos x-\sin x\Rightarrow$
$-\cfrac{a}{\sqrt[]{2} } \ge \sin(x-\cfrac{\pi}{4} )$
11-2、$f(x)=e^x(\sin x+a\cos x)\nearrow ,{f}' (x)\le 0\Rightarrow a\le \cfrac{\sin x+\cos x}{\sin x-\cos x},$
$\sin x与\cos x相当于两个变量,没法求最值,利用倍角公式,\cfrac{\sin x+\cos x}{\sin x-\cos x}=\sqrt{\cfrac{1+\sin 2x}{1-\sin 2x} } $

第4页\
9-2题目$f(x)=\cfrac{1}{2} x^2-2x+a\ln x $
${f}' (x)=x-2+\cfrac{a}{x} \quad x\gt 0 \Rightarrow \cfrac{a}{x} =2-x\Rightarrow a=2x-x^2\Rightarrow 0\lt a\lt 1$


9-3题目,参变分离,变号零点转化为变向交点
$f(x)=x\ln x-kx^2-x$
${f}' (x)=\ln x+1-2kx-1$
$令{f}' (x)=0,\Rightarrow \ln x=2kx\Rightarrow 2k=\cfrac{\ln x}{x} 有两个交点,\Rightarrow 0\lt 2k \lt \cfrac{1}{e} $


9-4题目:$f(x)=\cfrac{1}{3} x^3-\cfrac{a^x}{\ln a} $
${f}' (x)=x^2-a^x\quad x\gt 0$
$令{f}' (x)=x^2-a^x=\Rightarrow a^x=x^2两边取e为底的对数,得$
$g(x)\ge g(\cfrac{1}{e})= -\cfrac{1}{e},f(x)=\cfrac{1}{2} g(x^2),$
复合函数$t=x^2满足f(x)$的定义域,因而,复合函数的值域不变。即$f(x)\ge -\cfrac{1}{2e}$
$x\ln a=2\ln x \Rightarrow \cfrac{1}{2} \ln a=\cfrac{\ln x}{x} \Rightarrow 0\lt \cfrac{1}{2} \ln a \lt \cfrac{1}{e} \Rightarrow 1\lt a \lt e^{\frac{2}{e}}$


第5页2-1,求$f(x)=x^2\ln x$的最小值
$f(x)=x^2\ln x=\cfrac{1}{2}\cdot 2x^2\ln x=x^2\ln x^2 $
$构造g(x)=x\ln x,{g}' (x)=\ln x+1,$
$0\lt x\lt \cfrac{1}{e},{g}' (x)\lt 0,g(x)\searrow ;$
$\cfrac{1}{e}\lt x\lt +\infty ,{g}' (x)\gt 0,g(x)\nearrow$
$g(x)\ge g(\cfrac{1}{e})= -\cfrac{1}{e},f(x)=\cfrac{1}{2} g(x^2),$
复合函数$t=x^2满足f(x)$的定义域,因而,复合函数的值域不变。即$f(x)\ge -\cfrac{1}{2e}$

$x_1,x_2\gt 0,且x_1\ne x_2,则有:\sqrt{x_1x_2} \lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2} \lt\cfrac{x_1+x_2}{2} $
先证明左边的不等式:
$x_1,x_2\gt 0,且x_1\ne x_2,则有:\sqrt{x_1x_2} \lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2} $
$不妨设x_1\gt x_2,\ln x_1-\ln x_2 \lt \cfrac{x_1-x_2}{\sqrt{x_1x_2} } = \cfrac{x_1}{\sqrt{x_1x_2} }-\cfrac{x_2}{\sqrt{x_1x_2} }=\sqrt{\cfrac{x_1}{x_2} } -\sqrt{\cfrac{x_2}{x_1} }$

$令t=\sqrt{\cfrac{x_1}{x_2} } 换元,比t=\cfrac{x_1}{x_2}好$
$\ln \cfrac{x_1}{x_2} \lt \sqrt{\cfrac{x_1}{x_2} } -\sqrt{\cfrac{x_2}{x_1}}\Rightarrow $
$2\ln t \lt t-\cfrac{1}{t} \quad(t\gt1)$
构造函数$f(t)=t-\cfrac{1}{t}-2\ln t \quad (t\gt 1)$
${f}' (x)=1+\cfrac{1}{t^2}-\cfrac{2}{t} =\cfrac{t^2-2t+1}{t^2}$
${f}' (t)\gt 0\quad (t\gt 1) \therefore f(t)\gt f(1)=0$


再证明右边的不等式:
$\cfrac{x_1-x_2}{\ln x_1-\ln x_2} \lt\cfrac{x_1+x_2}{2} $
$不妨设x_1\gt x_2; $
$\cfrac{1}{\ln x_1-\ln x_2} \lt \cfrac{(x_1+x_2)}{2(x_1-x_2)} \Rightarrow $
$\ln x_1-\ln x_2\gt \cfrac{2(x_1-x_2)}{x_1+x_2} \Rightarrow $
$\ln \cfrac{x_1}{x_2}\gt \cfrac{2(\cfrac{x_1}{x_2}-1)}{\cfrac{x_1}{x_2} +1}\quad$ 右式分子分母除以$\cfrac{1}{2} x_2 $
换元令$t=\cfrac{x_1}{x_2}\quad (t\gt 1)\quad{\color{Red} 这便是飘带放缩 }$
$\ln t \gt \cfrac{2t-2}{t+1} =2-\cfrac{4}{t+1} \qquad$
$\Rightarrow \ln t -2+\cfrac{4}{t+1} \gt 0\quad $不去分母构造函数,法一:
构造$f(t)=\ln t+\cfrac{4}{t+1} -2\quad (t\gt 1)$
${f}' (t)=\cfrac{1}{t} -\cfrac{4}{(t+1)^2} =\cfrac{(t+1)^2-4t}{t(t+1)^2} =\cfrac{(t-1)^2}{t(t+1)^2}$
${f}' (t)\gt 0 \quad\therefore f(t)\nearrow f(t)\gt f(1)=0$

去分母再构造函数,法二:
$\ln t \gt \cfrac{2t-2}{t+1} \Rightarrow (t+1)\ln t\gt 2t-2$
构造$g(t)=(t+1)\ln t-2t +2$
${g}' (t)=\ln t+\cfrac{t+1}{t}-2=\ln t +\cfrac{1}{t} -1 $
${g}'' (t)=\cfrac{1}{t}-\cfrac{1}{t^2} =\cfrac{t-1}{t^2} \quad t\gt 1$
${g}'' (t)\gt0\Rightarrow {g}' (t)\nearrow \Rightarrow {g}' (t)\gt {g}' (1)=0$
$\Rightarrow g (t)\nearrow \Rightarrow g(t)\gt g(1)=0$

飘带放缩

$\cfrac{1}{2}(x-\cfrac{1}{x} )\le \ln x\le \cfrac{2(x-1)}{x+1} \quad x\in (0,1]$
$\cfrac{2(x-1)}{x+1} \le \ln x\le \cfrac{1}{2}(x-\cfrac{1}{x} ) \quad x\in [1,+\infty)$