zq3491 发布的文章

正切分式定理:
${\color{Red} \cfrac{\tan A}{\tan B}+ \cfrac{\tan A}{\tan C} =\cfrac{2a^2}{b^2+c^2-a^2} \qquad} $
${\color{Green} \cfrac{\tan B}{\tan A}+ \cfrac{\tan B}{\tan C} =\cfrac{2b^2}{a^2+c^2-b^2} \qquad} $
${\color{Violet} \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad } \cfrac{\tan C}{\tan A}+ \cfrac{\tan C}{\tan B} =\cfrac{2c^2}{a^2+b^2-c^2} \qquad $
$证明:\cfrac{\tan A}{\tan B}=\cfrac{\sin A\cos B}{\cos A \sin B}=\cfrac{a\times \cfrac{a^2+c^2-b^2}{2ac} }{b\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+c^2-b^2}{b^2+c^2-a^2} $
$\cfrac{\tan A}{\tan C}= \cfrac{\tan A}{\tan C}=\cfrac{\sin A \cos C}{\sin C \cos A}=\cfrac{a\times \cfrac{a^2+b^2-c^2}{2ab} }{c\times \cfrac{b^2+c^2-a^2}{2bc}}=\cfrac{a^2+b^2-c^2}{b^2+c^2-a^2} $
${\color{Red} 两式相加得证 } $
2025-02-20T08:49:56.png

2025-02-20T08:50:45.png

2025-02-20T08:49:56.png

2025-02-20T08:52:33.png
2025-02-20T08:53:39.png
${\color{Red} 此题要用到正切恒等式及中线长定理 } $
2025-02-20T08:55:35.png
${\color{Red} 此题用正切分式定理的证明过程或特殊值法,即分母相等 } $

常用的几个抽象函数模型:
${\color{Red} ①f(x+y)=f(x)+f(y)\Leftrightarrow f(x)=kx;\qquad} $
${\color{Green} ②f(x+y)=f(x)+f(y)+c\Leftrightarrow f(x)=kx+b;\qquad}$
${\color{Red} ③f(xy)=f(x)+f(y)\Leftrightarrow f(x)=\log_{a}{\left | x \right | } ;\qquad} $
${\color{Green} ④f(x+y)=f(x)f(y)\Leftrightarrow y=a^x} $
${\color{Red}⑤ f(x+y)+f(x-y)=2f(x)f(y)} {\color{Green} \Leftrightarrow y=\cos \omega x} $
${\color{Red}⑥ f(x+y)+f(x-y)=f(x)f(y)} {\color{Green} \Leftrightarrow y=A\cos \omega x} $
${\color{Green} ㈦⑦f(x+y)=f(x)+f(y)+2xy\Leftrightarrow f(x)=x^2} $
${\color{Peach} ⑧f(x+y)=f(x)f(\cfrac{\pi}{2}-y)+f(y)f(\cfrac{\pi}{2}-x) \Longrightarrow f(x)=\sin x} $
${\color{Purple} ⑨f^2(x)-f^2(y)=f(x+y)f(x-y)\Leftrightarrow \sin^2x-\sin^2y=\sin (x+y)\sin (x-y)}$正弦平方差公式
请宝贝们,证明一下正弦平方差定理,在右边往左边证。


2025-02-20T01:39:56.png
设$f(x)=A\cos \omega x\Rightarrow f(x+y)=A(\cos\omega x\cos \omega y-\sin \omega x\sin \omega y);\quad $
$f(x-y)=A(\cos\omega x\cos \omega y+\sin \omega x\sin \omega y)\Rightarrow 左边=f(x+y)+f(x-y)=2A\cos\omega x\cos \omega y$
$右边=f(x)f(y)=A^2\cos\omega x\cos \omega y\mapsto 2A=A^2,A=2$
$f(1)=2\cos \omega =1\Rightarrow \omega=\cfrac{\pi}{3} \Rightarrow f(x)=2\cos \cfrac{\pi}{3} x
$
$2(\cos \cfrac{\pi}{3} +\cos \cfrac{2\pi}{3}+\cos \cfrac{3\pi}{3}+\cos \cfrac{4\pi}{3})=-3$
2025-02-20T01:48:32.png
构造:$f(x)=x^2\log \left | x \right | \qquad $
$f(xy)=(xy)^2\log \left | (xy) \right | =x^2y^2(\log \left | x \right |+\left |y \right |)=y^2f(x)+x^2f(y)$
2025-02-20T02:41:51.png
同第一题$f(x)=2\cos \omega$
2025-02-20T02:44:24.png
左边$=\log xy+m=\log x+\log y+m;\quad $
右边$=f(x)+f(y)-1=\log x+m+\log y+m-1; \quad $
$m=2m-1\Rightarrow m=1$
$f(4)=\log_{a}{4} +1=2\Rightarrow a=4;\therefore f(x)=\log_{4}{x} +1$
$\therefore f(\cfrac{1}{2} )=\log_{4}{\cfrac{1}{2}} +1=\log_{2^2}{2^{-1}} +1=-\cfrac{1}{2}+1=\cfrac{1}{2}$
2025-02-20T03:14:58.png
设$f(x)=\cos \omega x\because f(4)=\cos 4\omega =-1\Rightarrow \omega =\cfrac{\pi}{4} $
$\therefore f(x)=\cos \cfrac{\pi}{4} x$
2025-02-20T03:27:05.png
$\sin x$
2025-02-20T03:28:31.png
设$f(x)=ax^2+bx+c,故左边=f(x)+f(y)=ax^2+bx+c+ay^2+by+c;\quad $
右边=$f(x+y)-xy-1=a(x+y)^2+b(x+y)+c-xy-1=ax^2+ay^2+2axy+b(x+y)+c-xy-1;$
左边=右边;$\begin{cases} c-1=2c\\2a-1=0\end{cases}$
$a=\cfrac{1}{2},c=-1,f(x) =\cfrac{1}{2}x^2+bx-1,f(1)=1,\Rightarrow b=\cfrac{3}{2}$
$f(x) =\cfrac{1}{2}x^2+\cfrac{3}{2}x-1$
2025-02-20T03:46:21.png
设$f(x)=\sin \omega x,f(1)=\sin \omega =1 \Rightarrow \omega =\cfrac{\pi}{2}$
$f(2x+1)为偶函数,故f(2x+1)=f(-2x+1),即f(x)关于x=1对称;$
$f(0)=0,sin为奇函数,关于(2,0)对称,T=\cfrac{2\pi}{\omega}=4$

在三角形$\bigtriangleup ABC中,有\sin ^2A-\sin ^2B=\sin (A+B)\sin (A-B)$
$\sin (A+B)\sin (A-B)=(\sin A\cos B+\cos A\sin B)(\sin A\cos B-\cos A\sin B)$
$=\sin^2 A\cos^2 B-\cos^2 A\sin^2 B=\sin^2 A(1-\sin^2 B)-(1-\sin^2 A)\sin^2 B$
=$\sin ^2A-\sin ^2B$
2025-07-16T04:53:07.png
AD
2025-07-16T05:01:14.png
$\cfrac{3t-t}{1+3t^2} =\cfrac{1}{\sqrt{3} }$
2025-07-16T05:10:06.png
$\cfrac{2\sqrt{6}}{9 } $
2025-07-16T12:13:14.png
$A=\cfrac{\pi}{6}$

$第1题 、b^2-a^2=ac{\color{Red} \Rightarrow } \sin ^2B-\sin ^2A=\sin A \sin C\Rightarrow \sin (B+A) \sin (B-A)=\sin A\sin C$
${\color{Red} \Rightarrow } \sin (B-A)=\sin A {\color{Red} \Rightarrow }B-A=A,B=2A或B-A+A=\pi$
$锐角三角形{\color{Red} \Rightarrow } \begin{cases} 0\lt A\lt \cfrac{\pi}{2}\\ 0\lt 2A\lt \cfrac{\pi}{2}\\ 0\lt \pi -3A\lt \cfrac{\pi}{2}\end{cases}{\color{Red} \Rightarrow} A\in (\cfrac{\pi}{6}, \cfrac{\pi}{4})$
$c选\Rightarrow \cfrac{1}{\cfrac{1}{\tan A} -\cfrac{1}{\tan B} }=\cfrac{\sin A\sin 2A}{-\sin A}=-\sin 2A=\cfrac{\sin A\sin B}{\sin(A-B)} =-\sin 2A$
$D{\color{Green} \Rightarrow 2\sin C=\sin A+\sin B} \Rightarrow 2\sin (A+B)=\sin A+\sin B\Rightarrow 2\sin 3A=\sin A+\sin 2A$
$2[\sin A\cos 2A+\cos A\sin 2A]=\sin A(1+2\cos A)\Rightarrow 2[\sin A(2\cos ^2A-1)+2\sin A\cos ^2A)]=$
$2\sin A(4\cos ^2-1)=\sin A(1+2\cos A)\Rightarrow 8\cos ^2-2=1+2\cos A\Rightarrow 8t^2-2t-3=0,t=\cfrac{3}{4}$
$第二题:数量积,共起点或共终点,夹角就是三角形的顶角。\tan (B-C)展开是含Bc角的,可见是求BC两角的关系。$
$ca\cos B-ba\cos C=-\cfrac{1}{2}c^2\Rightarrow ac\cdot \cfrac{a^2+c^2-b^2}{2ac}-ab\cdot\cfrac{a^2+b^2-c^2}{2ab}=-\cfrac{1}{2}c^2$
$\Rightarrow c^2-b^2=-\cfrac{1}{2} a^2 \Rightarrow \sin ^2C -\sin ^2B= -\cfrac{1}{2} \sin ^2A $
$\sin (C+B)\sin(C-B) =-\cfrac{1}{2} \sin ^2A\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin A$
$\Rightarrow \sin (C-B)=-\cfrac{1}{2} \sin (B+C)\Rightarrow \cfrac{3}{2} \sin C\cos B=\cfrac{1}{2}\cos C\sin B$
$3\tan C=\tan B$
$第三题:\frac{b}{a} -1=b^2-a^2\Rightarrow \frac{b-a}{a}= b^2-a^2\Rightarrow 1=a^2+ab$
$c=1\Rightarrow c^2=1\Rightarrow a^2=ab+b^2,此时与第一题相同了。$
$\sin ^2C-\sin ^2 A=\sin A\sin B\Rightarrow \sin (C+A)\sin (C-A)=\sin A\sin B\Rightarrow C=2A
B=\pi -3A$
$\sin 3A-\sin A=\sin (A+2A)-\sin A=3\sin A-4\sin^3 A-\sin A=2\sin A-4\sin^3 A$
$令\sin A=t,没有锐角的限制。\pi -3A\gt 0 \Rightarrow A\in (0,\frac{\pi }{6} ),2t-4t^3(t\in (0,\frac{\sqrt{3}}{2} )$
$第四题:2b^2-2a^2=c^2\Rightarrow 2\sin^2B -2\sin^2 A=\sin ^2C\Rightarrow 2\sin (B-A)=\sin C$
$2\sin (B-A)=\sin c=\sin (B+A)\Rightarrow \sin B\cos B=3\cos B\sin A\Rightarrow \tan B=3\tan A$
$设\tan A=t ,\tan (B-A)=\cfrac{3t-t}{1+3t^2} =\cfrac{2t}{1+3t^2}=\cfrac{2}{\frac{1}{t} +3t}$
$\Rightarrow \cfrac{1}{t} =3t\Rightarrow t=\frac{\sqrt{3} }{3} $

1、$e^x\ge x+1 \qquad 切点在(0,1)处,指数函数恒在直线y=x+1$上方。
2、$e^x\ge ex\qquad 切线过原点,切点在(e,1),指数函数恒在直线y=ex$上方。
3、$x-1\ge \ln x\quad 或\ln x\le x-1 切点在(1,0)处,对数函数恒在直线y=x-1$下方。
4、$\cfrac{x}{e}\ge \ln x \quad 或 \ln x \le \cfrac{x}{e} 切线过原点,切点在(e,1),指数函数恒在直线y=\cfrac{x}{e}$下方。

四、切线放缩

$1。证明:当a\ge 1时,a(x+1)\gt \cfrac{\ln x+1}{x}$
$解:定义域x\gt 0,a\ge 1\Rightarrow a(x+1)\ge x+1即证x+1\gt \cfrac{\ln x+1}{x}$
${\color{Green} 即证:x(x+1)\gt\ln x+1} \Leftrightarrow x^2+{\color{Red} (x-1)} +1\ge {\color{Red} \ln x}+1$
$要先证明{\color{Red} x-1\ge \ln x}后使用$
$2、证明:当a\gt a\ge e时, e^x\ge a(\ln x+1)$
$定义域x\gt 0,a\ge e\Rightarrow a(\ln x+1)\ge e(\ln x+1)$
$要证 e^x\ge a(\ln x+1),即证e^x\ge e(\ln x+1){\color{Red} \Leftrightarrow e^{x-1}\ge \ln x+1} \Leftrightarrow {\color{Green} e^{x-1}} \ge {\color{Red} x-1} +1\ge {\color{Green} \ln x} +1$
$3、证明:当m\le 2时,e^x\gt \ln (x+m)$
$证: 定义域x \gt 0,2\ge m {\color{Red} \Rightarrow \ln (x+2)\ge \ln (x+m)} $
$e^x\ge x+1={\color{Red} x+2} -1\ge \ln (x+2)\ge \ln (x+m)$
$4-1。证明:xe^x\ge \ln x +x+1 $
$证明:定义域x\gt 0,xe^x=e^{\ln x+x}\ge \ln x+x+1$
$要证切线不等式成立,还要证明\ln x+x能取到0$
$4-2。已知不等式:xe^x-a(x+1)\ge \ln x 对\forall x\in (0,+\infty) 恒成立,则实数 a的取值范围是$
参变分离再放缩
$定义域x\gt 0,xe^x-\ln x \ge a(x+1)\Rightarrow a\le \cfrac{xe^x-\ln x}{x+1}$
$\le \cfrac{xe^x-\ln x}{x+1} =\cfrac{{\color{Red} e^{\ln x+x}} -\ln x}{x+1} \ge \cfrac{{\color{Red} \ln x+x+1} -\ln x}{x+1}=1$
$4.3、已知不等式x^{-3}e^x-a\ln x\ge x+1对于任意x\in (1,+\infty) 恒成立,则实数a的取值范围是$
$x^{-3}e^x-a\ln x\ge x+1\Leftrightarrow x^{-3}e^x-x-1\ge a\ln x$
$\Rightarrow a\le \cfrac{{\color{Red} x^{-3}e^x} -x-1}{\ln x} =\cfrac{{\color{Red} e^{x-3\ln x}} -x-1}{\ln x}\ge \cfrac{{\color{Red} x-3\ln x+1} -x-1}{\ln x} =-3$

1、证明:$\ln x\ge -\cfrac{1}{x}+1\quad$
${\color{Red} 法一:} 作差f(x)=\ln x+\cfrac{1}{x}-1 \quad $
${ f}' (x)=\cfrac{1}{x}-\cfrac{1}{x^2} =\cfrac{x-1}{x} $
$x\in (0,1),{f}' (x)\lt 0,\quad f(x)\searrow ;$
$x\in (1,+\infty),{f}' (x)\gt 0,\quad f(x)\nearrow ;$
$f(x)\ge f(1)=0$
${\color{Red} 法2:}\cfrac{1}{x} -1\ge -\ln x \quad 换元令\cfrac{1}{x}=t $
$t -1\ge \ln t\qquad $
$f(t)=t-1-\ln t \quad {f}' (t)=1-\cfrac{1}{t}= \cfrac{t-1}{t} $
$(0,1),{f}' (t)\lt 0,\quad f(t)\searrow $
$(1,+\infty ),{f}' (t)\gt 0,\quad f(t)\nearrow$
$f(t)\ge f(1)=0\quad$得证


2、证明:$(5-4x^2)e^x\lt 8$
${\color{Red} ①} 当x^2 \ge \cfrac{5}{4},5-4x^2\lt 0成立 $
${\color{Red} ②} 只须再证x^2\lt \cfrac{5}{4} 时,也成立即可$
令$f(x)=(5-4x^2)e^x,\quad {f}'(x)= e^x(5-4x^2-8x)=-e^x(4x^2+8x-5)=-e^x(2x+5)(2x-1)$
当$x\lt -\cfrac{5}{2} 或x\gt \cfrac{1}{2}时 ,{f}'(x)\lt 0,f(x)\searrow ; $
当$-\cfrac{5}{2}\lt x\lt \cfrac{1}{2}时,{f}'(x)\gt 0,f(x)\nearrow ;$
$-\cfrac{5}{2} \lt -\cfrac{\sqrt{5} }{2} ,\cfrac{1}{2}\lt \cfrac{\sqrt{5} }{2},f(x)在 [-\cfrac{\sqrt{5} }{2},\cfrac{\sqrt{5} }{2}]内有极大值f(\cfrac{1}{2})=4e^\cfrac{1}{2},\quad \because\quad e\lt 4\Rightarrow \sqrt{e} \lt 2,4\sqrt[]{e} \lt 8$
法二:
$x^2\lt \cfrac{5}{4} \Rightarrow -\cfrac{\sqrt{5} }{2}\lt x \lt \cfrac{\sqrt{5} }{2},设f(x)=8-(5-4x^2)e^x;
{f}' (x)=e^x(4x^2+8x-5)=e^x(2x-1)(2x+5)$
$-\cfrac{\sqrt{5} }{2} \lt x \lt \cfrac{1}{2} ,{f}' (x)\;\lt 0,f(x)\searrow ;\qquad$
$\cfrac{1}{2} \lt x \lt \cfrac{\sqrt{5}}{2} ,{f}' (x)\gt 0,f(x)\nearrow ;\qquad$
$f(x)在x=\cfrac{1}{2}处有极小值f(\cfrac{1}{2})=4(2-\sqrt{e} )\gt 0$


3、证明:$\frac{2}{3}x^3\gt \cfrac{1}{2}x^2+\ln x$
$f(x)=\frac{2}{3}x^3 -\cfrac{1}{2}x^2-\ln x \quad{\color{Red}即证f(x)\gt0} $
${f}' (x)=2x^2-x-\cfrac{1}{x}=\cfrac{2x^3-2x^2+x^2-1}{x} $
$ =\cfrac{2(x-1)(2x^2+x+1)}{x}\quad \because\quad 2x^2+x+1\gt 0,$
$x\in (0,1),{f}' (x)\lt 0,\quad f(x)\searrow $
$x\in (1,+\infty ),{f}' (x)\gt 0,\quad f(x)\nearrow$
$f(x)\ge f(1)=\cfrac{2}{3}-\cfrac{1}{2}=\cfrac{1}{6} \quad$得证


4证明:$当a\ge 1时,ax^2\ge 2\ln x+1\quad $
解:$f(x)=ax^2-2\ln x-1\ge 0\quad {\color{Red}即证f(x)_{min}\gt0}$
${f}' (x)=2ax-\cfrac{2}{x} =\cfrac{2(ax^2-1)}{x} \quad (a\ge 1)$
$(0,\frac{1}{\sqrt{a} } )\quad {f}' (x)\lt 0,f(x)\searrow$
$ (\frac{1}{\sqrt{a} },+\infty )\quad {f}' (x)\gt 0,f(x)\nearrow $
$f(x)\ge f(\frac{1}{\sqrt{a} })=\ln a\ge0\quad (a\ge 1) $
${\color{Red} 方法二、}$
$a\ge 1,{\color{Red} ax^2\ge x^2}\ge 2\ln x +1,即证x^2-2\ln x-1\ge0\Leftrightarrow (x^2-2\ln x-1)_{min}\ge0$
令$f(x_0)=x^2-2\ln x-1\quad {f}' (x)=2x-\cfrac{2}{x} =\cfrac{2(x^2-1)}{x} =\cfrac{2(x+1)(x-1)}{x} $
$x\in (0,1)\searrow ,(1,+\infty)\nearrow ,f(x)在x=1处有最小值,f(1)=0,$得证
5、证明:$0\lt a\le e时,e^x\ge a(\ln x+1)$
解:$法一:当0\lt x \le\cfrac{1}{e},\ln x+1\lt 0,$
$e^x\gt 0\ge a(\ln x+1)\quad 成立。 $
$当x\gt\cfrac{1}{e}时,a(\ln x+1)\le e(\ln x+1)\le e^x$
$法二:\cfrac{1}{a} \cdot e^x\ge \ln x+1$
$\cfrac{1}{a}\ge \cfrac{1}{e} $
$ \cfrac{1}{a} \cdot e^x\ge \cfrac{1}{e} \cdot e^x=e^{x-1}\ge \ln x+1$
$设f(x)=e^{x-1}-\ln x-1\quad (x\gt 0)$
${f}' (x)=e^{x-1}-\cfrac{1}{x} \nearrow 且{f}' (1)=0$
$\therefore f(x)在(0,1)\searrow ,(1,+\infty)\nearrow \therefore f(x)\ge f(1)=0$

6、证明:$当a\le 2且x\gt 1时,a(x-1)-\ln x+1\lt e^{x-1}$
解:令$f(x)=e^{x-1}+\ln x+a(1-x)-1 \gt 0\quad {\color{Red}即证f(x)_{min}\gt0}(a\le 2,x\gt 1)$
${f}' (x)=e^{x-1}+ \cfrac{1}{x} -a$
${f}'' (x)=e^{x-1}-\cfrac{1}{x^2} \gt 0,{f}' (x)\nearrow ,$
${f}' (x)\ge {f}' (1)=2-a\ge 0,f(x)\nearrow$
$f(x)\gt f(1)=0$得证
方法二:
$\because a\le 2,{\color{Red} a(x-1)} -\ln x+1\le {\color{Red} 2(x-1)} -\ln x+1\lt e^{x-1}\Leftrightarrow $
$e^{x-1}\gt 2x-2-\ln x+1\Rightarrow e^{x-1}-2x+1+\ln x\gt 0$
$x\gt 1时,令f(x)=e^{x-1}-2x+1+\ln x $
${f}' (x)=e^{x-1}-2+\cfrac{1}{x} \qquad$
${f}'' (x)=e^{x-1}-\cfrac{1}{x^2}$
$\because x\gt 1时,e^{x-1}\gt 1,-\cfrac{1}{x^2}\lt 1,\therefore {f}'' (x)\gt 0$
$\Rightarrow {f}' (x)\nearrow 且{f}'(1)=0,\Rightarrow {f}' (x)\gt 0$
$\therefore f(x)\nearrow 且f(1)=0,f(x)\gt f(1)=0$