${\color{Red} 分式裂项}$ 分式裂项
一、基本原理
裂消原理:$\cfrac{大-小}{小*大}=\cfrac{1}{小}-\cfrac{1}{大}$
相消规律:对称性
相邻项,首尾各剩下1项;
隔一项,首尾各剩下2项;
隔两项,首尾各剩下3项;
二、八大裂项模型:
${\color{Red} \quad ①\quad a_n=\cfrac{1}{n(n+1)} =\cfrac{1}{n} -\cfrac{1}{n+1} } \quad \qquad$
${\color{Green}\quad ②\quad a_n=\cfrac{1}{(2n-1)(2n+1)} =\cfrac{1}{2} \cfrac{(2n+1)-(2n-1)}{(2n-1)(2n+1)}=\cfrac{1}{2}\cdot (\cfrac{1}{2n-1}-\cfrac{1}{2n+1})}\quad \qquad$
${\color{Red} \quad ③\quad a_n=\cfrac{3}{(6n-1)(6n+5)} =\cfrac{1}{2} \cfrac{(6n+5)-(6n-1)}{(6n-1)(6n+5)}=\cfrac{1}{2} \cfrac{6}{(6n-1)(6n+5)}}\quad \qquad$
${\color{Green}\quad ④\quad a_n=\cfrac{2^{n+1}}{(2^n+1)(2^{n+1}+1)} =\cfrac{2[(2^{n+1}+1)-(2^n+1)]}{(2^n+1)(2^{n+1}+1)}}\quad $
${\color{Red} \quad ⑤\quad a_n=\cfrac{n+1}{4n^2(n+2)^2} =\cfrac{1}{4} \cdot \cfrac{1}{4} \cdot \cfrac{(n+2)^2-n^2}{n^2(n+2)^2}}\quad $
${\color{Green}\quad ⑥\quad a_n=(-1)^n\cfrac{2n+1}{n(n+1)}=(-1)^n\cdot\cfrac{n+1+n}{n(n+1)} }\quad 裂项要出现负号,这里有-1$
${\color{Red} \quad ⑦\quad a_n=\cfrac{1}{n(n+1)(n+2)} =\cfrac{1}{2} \cfrac{(n-2)-n}{n(n+1)(n+2)}=\cfrac{1}{2} [\cfrac{1}{n(n+1)}-\cfrac{1}{(n+1)(n+2)} ]}\quad$当中间n+1项是透明的
${\color{Green}\quad ⑧\quad a_n=\cfrac{n}{(n+1)!}=\cfrac{(n+1)-1}{1\times 2\times 3\times4 \times \cdots \cdots (n+1)} =\cfrac{1}{n!}-\cfrac{1}{(n+1)!} }\quad$ 只看首尾项
实战:

(1)设$b_n=(2n-1)a_n\quad S_n表示b_n的前n项和,S_n=2n$
$①n=1时,S_1=b_1=2;$
$②n\ge 2时,S_n-S_{n-1}=b_n=2n-2(n-1)=2,故b_n$是常数数列。
$b_n=(2n-1)a_n=2\Rightarrow a_n=\cfrac{2}{2n-1}$
(2)$\cfrac{a_n}{2n+1} =\cfrac{2}{(2n-1)(2n+1)}=\cfrac{1}{2n-1}-\cfrac{1}{2n+1}$
设前n项和为$T_n={\color{Green} \cfrac{1}{1}} -\cfrac{1}{3}+\cfrac{1}{3} -\cfrac{1}{5}+\cfrac{1}{5} -\cfrac{1}{7}+\cdots \cdots+$
$\cfrac{1}{2n-3}-\cfrac{1}{2n-1}+\cfrac{1}{ 2n-1}-{\color{Green} \cfrac{1}{2n+1}} =\cfrac{2n}{2n+1}$

$n\ge 2时,a_n=S_n-S_{n-1}=\sqrt{S_n} +\sqrt{S_{n-1}} \Rightarrow (\sqrt{S_n})^2 -(\sqrt{S_{n-1}})^2 =\sqrt{S_n} +\sqrt{S_{n-1}}$
$\sqrt{S_n} -\sqrt{S_{n-1}}=1\Rightarrow \sqrt{S_n}$ 是公差为1的首项为$\sqrt{a_1} $的等差数列。
$\sqrt{S_n} =n\Rightarrow S_n=n^2\quad a_n=n^2-(n-1)^2=2n-1$
$b_n=(-1)^n\cfrac{n}{a_na_{n+1}}= (-1)^n\cfrac{n}{(2n-1)(2n+1)}=\cfrac{1}{4} \times (-1)^n\cfrac{2n+1+2n-1}{(2n-1)(2n+1)}$
$b_n=\cfrac{1}{4} (-1)^n(\cfrac{1}{2n-1}+\cfrac{1}{2n+1} )$
$T_{2n}=\cfrac{1}{4} [{\color{Green}-(\cfrac{1}{1} } +\cfrac{1}{3})+(\cfrac{1}{3} +\cfrac{1}{5})-(\cfrac{1}{5}-\cfrac{1}{7})+\dots +\cfrac{1}{4n-1}+{\color{Green}\cfrac{1}{4n+1} } ]$
$T_{2n}=-\cfrac{n}{4n+1}$
${\color{Red} PART\quad TWO\quad 根式裂项}$
一、模型总结:
${\color{Red} \quad ②\quad a_n=\cfrac{1}{\sqrt{n}+\sqrt{n+1} } =\cfrac{\sqrt{n+1}-\sqrt{n} }{(\sqrt{n+1}+\sqrt{n} )(\sqrt{n+1}-\sqrt{n} )} =\sqrt{n+1}-\sqrt{n} }$
${\color{Green}\quad ②\quad a_n=\cfrac{1}{\sqrt{n}(n+1)+n\sqrt{n+1} } =\cfrac{1}{\sqrt{n}\sqrt{n+1}(\sqrt{n+1} +\sqrt{n} ) } =\cfrac{1}{\sqrt{n} \sqrt{n+1} }(\sqrt{n+1}-\sqrt{n})}$
${\color{Green} \quad ②\quad a_n=\cfrac{1}{\sqrt{n} } -\cfrac{1}{\sqrt{n+1}} } $


${\color{Green} a_n=\cfrac{1}{\sqrt{n} } -\cfrac{1}{\sqrt{n+1}} } $
$S_n=\cfrac{1}{\sqrt{1} } -\cfrac{1}{\sqrt{n+1}} $
$S_{2024}=1-\cfrac{1}{\sqrt{2024+1}} ,45^2=2025,2^2=3+12^2+....+45^2,45-2+1=44个$
${\color{Red} 第三部分、平方递推裂项} $
一、模型总结:
${\color{Green} ①a_{n+1}=a_n^2-a_n+1,(a_{n+1}=a_n^2两边对数求通项,但此式求不了通项。} $
$a_{n+1}-a_n=(a_n^2-1)^2,a_1\ne 1时,$是递增数列。
$a_{n+1}=a_n^2-a_n+1\Rightarrow a_{n+1}=a_n(a_n-1)+1\Rightarrow a_{n+1}-1=a_n(a_n-1)\Rightarrow 取倒\cfrac{1}{a_{n+1}-1}=\cfrac{1}{a_n(a_n-1)} $
$\cfrac{1}{a_{n+1}-1}=\cfrac{1}{a_n(a_n-1)} =\cfrac{1}{a_n-1} -\cfrac{1}{a_n} \Rightarrow \cfrac{1}{a_n}=\cfrac{1}{a_n-1} - \cfrac{1}{a_{n+1}-1}$裂项完成
步骤:因式分解;移系数;取倒数;裂项;互移。

$\cfrac{1}{a_n}=\cfrac{1}{a_n-1} - \cfrac{1}{a_{n+1}-1}$
取倒前的那一步:$a_{n+1}-1=a_n(a_n-1)\Rightarrow \cfrac{1}{a_n}=\cfrac{a_n-1}{a_{n+1}-1} $
$A_n=1-\cfrac{1}{a_{n+1}}\quad B_n=\cfrac{a_1-1}{a_{n+1}-1} $

步骤:因式分解;移系数;取倒数;裂项;互移。
$ a_{n+1}-2=\cfrac{1}{2} a_n(a_n-2)\Rightarrow \cfrac{1}{a_{n+1}-2} =\cfrac{2}{ a_n(a_n-2)} $
$ \cfrac{1}{a_{n+1}-2} =\cfrac{a_n-(a_n-2)}{a_n(a_n-2)} =\cfrac{1}{a_n-2}-\cfrac{1}{a_n} $
$\Rightarrow \cfrac{1}{a_n} =\cfrac{1}{a_n-2}-\cfrac{1}{a_{n+1}-2} $
$a_1=\cfrac{5}{2} \quad \cfrac{1}{a_1}+ \cfrac{1}{a_2}+...+\cfrac{1}{a_{2020}} \quad $
$=(\cfrac{1}{a_1 -2}-\cfrac{1}{a_2-2})+(\cfrac{1}{a_2-2} -\cfrac{1}{a_3-2})+\cdots +(\cfrac{1}{a_{2020}-2}-\cfrac{1}{a_{2021}-2} )$
$\Rightarrow =\cfrac{1}{\cfrac{5}{2} -2}-\cfrac{1}{a_{2021}-2} =2-\cfrac{1}{a_{2021}-2}$
$a_{n+1}-a_n=\cfrac{1}{2}(a_n-2)^2\gt0 , a_n\nearrow 易证a_{2023}\gt 3$
${\color{Red} PART \quad4 \quad三角裂项 }$
${\color{Red}一、模型总结:来自差角公式:}$
${\color{Red} \quad①\quad a_n=\tan n\cdot \tan (n+1)} $
$\tan 1=\tan [(n+1)-n]=\cfrac{\tan (n+1)-\tan n}{1+\tan n\cdot \tan (n+1)} \Rightarrow $
$1+\tan n\cdot \tan (n+1)=\cfrac{\tan (n+1)-\tan n}{\tan 1} \Rightarrow 1+\tan n\cdot \tan (n+1) =\cfrac{1}{\tan 1} [\tan (n+1)-\tan n]$
${\color{Red} \tan n\cdot \tan (n+1) =\cfrac{1}{\tan 1} [\tan (n+1)-\tan n]-1} $
${\color{Red} S_n =\cfrac{1}{\tan 1} [\tan (n+1)-\tan 1]-n} $
${\color{Green} \quad ②\quad a_n=\cfrac{1}{\sin n\sin (n+1)} } $
${\color{Green} \because \sin 1}=\sin[(n+1)-n]=\sin (n+1)\cos n-\cos (n+1)\sin n$
右边分子分母$\times \sin 1 \quad \therefore $
$a_n=\cfrac{\sin 1}{\sin 1\sin n\sin (n+1)}=\cfrac{1}{\sin 1}\cdot \cfrac{\sin (n+1)\cos n-\cos (n+1)\sin n}{\sin n\sin (n+1)} $
${\color{Green} a_n= \cfrac{1}{\sin n\sin (n+1)} } =\cfrac{1}{\sin 1}\cdot [\cfrac{1}{\tan n} -\cfrac{1}{\tan (n+1)} ]$
${\color{Red}\quad ③\quad a_n=\cfrac{1}{\cos n\cos (n+1)} } $
同上,分子分母$\times \sin1 \quad a_n=\cfrac{1}{\sin1} \cdot\cfrac{\sin1}{\cos n\cos (n+1)} =$
$a_n=\cfrac{1}{\sin1} \cdot\cfrac{\sin (n+1)\cos n-\cos (n+1)\sin n}{\cos n\cos (n+1)} =\cfrac{1}{\sin1} \cdot[\tan (n+1)-\tan n]$
${\color{Red}\quad a_n=\cfrac{1}{\sin1} \cdot[\tan (n+1)-\tan n]} $

$7a_4=63\Rightarrow a_4=9,a_5=9,d=a_5-a_4=3,a_1=0,a_n=3n-3$
$b_n=\cfrac{\sin 3}{\cos(3n-3)\cos (3n)} =\cfrac{\sin [3n-(3n-3)]}{\cos(3n-3)\cos (3n)} =\cfrac{\sin 3n\cos(3n-3)-\cos 3n \sin (3n-3)}{\cos(3n-3)\cos (3n)}=\tan 3n -\tan (3n-3)$
$S_n=b_1+b_2+\dots +b_n =\tan 3 -{\color{Red} \tan 0} +\tan 6-\tan 3+\dots +{\color{Red} \tan 3n} -\tan (3n-3)\quad$位置对称!!
$S_n=\tan 3n$