zq3491 发布的文章

2025-04-22T10:49:21.png
齐次式+比值换元
$\cfrac{3a-2b}{3a+2b} =\cfrac{3\times \cfrac{a}{b} -2}{3\times \cfrac{a}{b} +2}$
还是天津2010年 高考题目
$f(x)=\cfrac{x}{e^x} ,若x_1\ne x_2,且有f(x_1)=f(x_2)证明:x_1+x_2\gt 2 及 x_1x_2\lt 1$

$\cfrac{3a-2b}{3a+2b} =\cfrac{3\times \cfrac{a}{b} -2}{3\times \cfrac{a}{b} +2}$
$\cfrac{x_1}{e^{x_1}} =\cfrac{x_2}{e^{x_2}}$
$\Rightarrow \cfrac{x_1}{x_2} =\cfrac{e^{x_1}}{e^{x_2}}\Rightarrow {\color{Red} \ln } \cfrac{e^{x_1}}{e^{x_2}}={\color{Red} \ln }\cfrac{x_1}{x_2}\Rightarrow x_1-x_2=\ln \cfrac{x_1}{x_2}$
$\Rightarrow \cfrac{x_1-x_2}{\ln \cfrac{x_1}{x_2} } ={\color{Red} 1} \quad 1的妙用来了$
$欲证x_1+x_2\gt 2\Leftrightarrow x_1+x_2\gt 2\cdot \cfrac{x_1-x_2}{\ln \cfrac{x_1}{x_2} }$
$设x_1\gt x_2\Rightarrow \ln \cfrac{x_1}{x_2}\gt \cfrac{2(x_1-x_2)}{x_1+x_2}\quad$下一步齐次化
$\Rightarrow \ln \cfrac{x_1}{x_2}\gt \cfrac{2(\cfrac{x_1}{x_2} -1)}{\cfrac{x_1}{x_2} +1}$
设$t=\cfrac{x_1}{x_2}换元得,\ln t\gt \cfrac{2(t-1)}{t+1}$
这是常用的飘带放缩,构成函数求导易证。$t\gt 1$
$g(t)=\ln t-\cfrac{2(t-1)}{t+1}=\ln t-\cfrac{2(t+1-2)}{t+1}=\ln t -2+\cfrac{4}{t+1}$
${\color{Orange}即证t\gt 1时,g(t)_{min}\gt 0}$
${g}'(t)= \cfrac{1}{t} -\cfrac{4}{(t+1)^2} =\cfrac{t^2+2t+1-4t}{t(t+1)^2} \gt 0$
${\color{Orange}g(t)\gt g(t)_{min}=g(1)=0}$


若要证$x_1x_2\lt 1$
$\sqrt{x_1x_2} \lt 1=\cfrac{x_1-x_2}{\ln \cfrac{x_1}{x_2} }\Rightarrow \ln \cfrac{x_1}{x_2} \lt \cfrac{x_1-x_2}{\sqrt{x_1x_2}}\Rightarrow \ln \cfrac{x_1}{x_2}\lt\cfrac{\cfrac{x_1}{x_2}-1 }{\sqrt{\cfrac{x_1}{x_2}} }$
$设t=\sqrt{\cfrac{x_1}{x_2}},\quad t\gt 1\quad \ln t^2\lt \cfrac{t^2-1}{t}=t-\cfrac{1}{t}\Rightarrow \ln t\lt\cfrac{1}{2} (t-\cfrac{1}{t} )$
$这又是飘带不等式,构造h(t)=\cfrac{1}{2} (t-\cfrac{1}{t} )-\ln t\qquad$
${\color{Orange} 即证h(t)_{min}\gt 0}\quad t\gt 1$
${h}' (t)=\cfrac{1}{2}[1+\cfrac{1}{t^2}-\cfrac{2}{t}]=\cfrac{(1+t)^2}{2t^2}\gt 0\Rightarrow{h}(t)\nearrow$
$h(t)\gt {\color{Orange}h(t)_{min}=h(1)=0}$


例:$f(x)=\ln x -ax -1(a\in R),若f(x)+2=0$
有两个不等实根,且$x_2\gt 2x_1$,$求证:x_1x_2^2\gt \cfrac{32}{e^3},\ln 2=0.693$
$f(x)=\ln x-ax-1\Leftrightarrow f(x)+2=\ln x-ax+1=0\Rightarrow \begin{cases} \quad \ln x_1+1=ax_1\\ \qquad \\ \quad \ln x_2+1=ax_2\end{cases}$
$\Rightarrow \cfrac{ \ln x_1+1}{\ln x_2+1} =\cfrac{x_1}{x_2} \quad 令x_1\lt x_2,\quad t=\cfrac{x_1}{x_2}$

$\Rightarrow x_1=tx_2,\qquad \ln x_1=\ln t+\ln x_2$
$\Rightarrow {\color{Red} t=\cfrac{\ln t+\ln x_2+1}{\ln x_2+1} }=\cfrac{\ln t}{\ln x_2+1} +1$

$$\Rightarrow \begin{cases} \quad \ln x_2=\cfrac{\ln t}{t-1} +1\\ \qquad \\ \quad \ln x_1=\ln t+\ln x_2=\cfrac{t\ln t}{t-1} +1\end{cases}$$
$要证{\color{Green} x_1\cdot x_2^2\gt \cfrac{32}{e^3}} \quad 即证\Leftrightarrow \ln x_1+2\ln x_2\gt 5\ln 2-3$
$即证:\cfrac{2\ln t}{t-1} +\cfrac{t\ln t}{t-1} \gt 5\ln 2$
$令g(t)=\cfrac{2\ln t}{t-1} +\cfrac{t\ln t}{t-1}=\cfrac{(t+2)\ln t}{t-1},$
$即证0\lt t\lt \cfrac{1}{2}时,{\color{Green} g(t)_{min}} \gt 5\ln 2$
${g}' (t)=\cfrac{(\ln t+1+\cfrac{2}{t} )(t-1)-(t+2)\ln t}{(t-1)^2} =\cfrac{t+1-3\ln t-\cfrac{2}{t} }{(t-1)^2}$
$分子太长,单独拎出来,h(t)=t+1-3\ln t-\cfrac{2}{t}$
${h}' (t)=1-\cfrac{3}{t}+\cfrac{2}{t^2}=\cfrac{(t-2)(t-1)}{t^2}\gt 0\quad 0\lt t\lt \cfrac{1}{2}$
$h(\cfrac{1}{2} )=\cfrac{3}{2}-3\ln \cfrac{1}{2}-4= -\cfrac{5}{2}+3\ln 2\lt 0$
$\Rightarrow {g}' (t)\lt 0\Rightarrow g(t)\searrow g(t)\gt g(t)_{min}=g(\cfrac{1}{2})=5\ln 2$

指对切线放缩

2025-04-22T08:31:34.png
${\color{Green} e^x必会不等式\Rightarrow \begin{cases} e^x\ge x+1\quad x=0取=\\ e^x\ge ex\quad x=1取=\end{cases}}$
${\color{Red} \ln x必会不等式\Rightarrow \begin{cases} 1-\cfrac{1}{x}\le \ln x\le x-1\quad x=1取=\\ \ln x\le \cfrac{x}{e}\quad x=e取=\end{cases}}$
${\color{Purple} 常见的三角放缩:} \sin x \lt x \lt \tan x,x\in(0,\cfrac{\pi}{2})$
其他放缩:
$\ln x \lt \sqrt{x} -\frac{1}{\sqrt{x} }(x\gt1)\qquad \ln x \gt \sqrt{x} -\frac{1}{\sqrt{x} }(0\lt x\lt1)$
$\ln x \lt \cfrac{1}{2}(x-\cfrac{1}{x}) (x\gt1)\qquad \ln x \gt \cfrac{1}{2}(x-\cfrac{1}{x}) (0\lt x\lt1)$
$\ln x \gt \cfrac{2(x-1)}{x+1}) (x\gt1)\qquad \ln x \lt \cfrac{2(x-1)}{x+1}) (0\lt x\lt1)$
$\ln x \gt -\cfrac{1}{2}x^2+2x-\cfrac{3}{2} (x\gt1)\quad \ln x \lt -\cfrac{1}{2}x^2+2x-\cfrac{3}{2} (0\lt x\lt1)$
${\color{Red} e^x\ge 1+x+\cfrac{1}{2}x^2 (x\ge 0) } $
例1:$证明不等式e^x-\ln (x+2)\gt 0恒成立$

$例2:x\gt 0時,證明ex^2-x\ln x\lt xe^x+\cfrac{1}{e}$
$ex^2-x\ln x\lt xe^x+\cfrac{1}{e}\Leftrightarrow e^x+\cfrac{1}{ex} \gt ex-\ln x$
$即证 e^x+\cfrac{1}{ex} \ge ex{\color{Green} +\cfrac{1}{ex} } \gt ex{\color{Green} -\ln x} =ex+\ln \cfrac{1}{x}$
$\cfrac{\ln x}{x}\le \cfrac{1}{e}\Rightarrow \cfrac{x}{e}\ge \ln x \Rightarrow {\color{Green} \cfrac{1}{ex} \ge \ln \cfrac{1}{x}}$

$例3:对于\forall x\gt 0,不等式e^x+x^2-(e+1)x+\cfrac{e}{x}\gt 2成立$
$\because e^x\ge ex$
$\Rightarrow {\color{Green} e^x} +x^2-(e+1)x+\cfrac{e}{x}\ge {\color{Green} ex} +x^2-(e+1)x+\cfrac{e}{x}\gt 2$
$x^2-x+\cfrac{e}{x}\gt 2$

$x^2-2x+x+\cfrac{e}{x}=(x-1)^2-1+ x+\cfrac{e}{x}\ge 2\sqrt{e} -1\gt 2$

例4:$e^x+\cfrac{1}{x}\ge 2-\ln x+x^2+(e-2)x$
用${\color{Green}e^x }+\cfrac{1}{x} \ge {\color{Green} ex+(x-1)^2} +\cfrac{1}{x}\ge 2-\ln x+x^2+(e-2)x$


用曲线代替直线放缩:

一、极值点偏移的概念
抛物线不偏移,$x_1\ne x_2,f(x_1)=f(x_2)\Leftrightarrow x_1+x_2=2x_0$
${\color{Red} 等值函数的中点横坐标不在极值点上}$
从图形来看有三种类型:
$\cfrac{x_1+x_2}{2} \gt x_0 \qquad$
${f}' (x_1)\gt {f}' (x_2)\qquad$
${f}' (\cfrac{x_1+x_2}{2} )\lt 0$
2025-04-21T16:22:31.png
2025-04-22T10:47:52.png
$例1.f(x)=e^x-3x,y=a与f(x)有两交点,横坐标为x_1,x_2,则(\quad)$
$A,x_1+x_2\lt 2 \ln 3\quad B,x_1+x_2\gt 2 \ln 3,\quad$
$C,x_1+x_2\lt 4 \ln 3\qquad D,x_1+x_2\gt 4 \ln 3$
$例2f(x)=x+3-\ln x与y=a有两交点,横坐标为x_1,x_2,则(\quad)$
$A,x_1+x_2\lt 2 \quad B,x_1+x_2\gt 2$ ,
$C,x_1+x_2\lt 4 \qquad D,x_1+x_2\gt 4$
2021新一卷:
已知函数$f(x)=x(1-\ln x),设a,b$为两不相等的正数,且$b\ln a-a\ln b=a-b,证明:2\lt \cfrac{1}{a}+\cfrac{1}{b}\lt e$
$\because \cfrac{\ln a}{a} -\cfrac{\ln b}{b} =\cfrac{1}{b} -\cfrac{1}{a} \Rightarrow \cfrac{1}{a}+\cfrac{1}{a}\ln a=\cfrac{1}{a}+\cfrac{1}{a}\ln a\quad\Rightarrow \cfrac{1}{a} - \cfrac{1}{a}\ln \cfrac{1}{a}=\cfrac{1}{b} - \cfrac{1}{b}\ln \cfrac{1}{b}$
$令x_1=\cfrac{1}{a},x_2=\cfrac{1}{b}\Rightarrow f(x_1)=f(x_2)$
$要证2\lt x_1+x_2\lt e,2\lt x_1+x_2\lt e,{f}'(x)=-\ln x$
${\color{Red} f(x)在(0,1)\nearrow ,在(1,+\infty)\searrow }$
${\color{Green}先证x_1+_2\gt 2},令0\lt x_1\lt 1\lt x_2,即证x_2\gt 2-x_1\gt 1({\color{Green} 为什么不是x_1\gt 2-x_2} {\color{Red} 遇上对数时,减小数} )$
${\color{Purple} \because f(x)在x\gt 1\searrow} ,即证f(x_2)\lt f(2-x_1)$
${\color{Purple} \because f(x_2)=f(x_1)} ,即证f(x_1)\lt f(2-x_1)\qquad {\color{Red}双变量转单变量!}$
$即证f(x_1)-f(2-x_1)\lt 0恒成立$
$下面构造函数并证明g(x)=f(x)-f(2-x)\lt 0,在{\color{Red}0\lt x\lt 1}恒成立,即证{\color{Red} g(x)_{max}\lt 0}$
${g}' (x)={f}' (x)-{f}'(x){(2-x) }' =-\ln x-\ln (2-x)=-\ln [x(2-x)]$
$x(2-x)开口向下,对称轴为x=1,故在(0,1)单调递增,取值范围为(0,1)$
$\because {g}' (x)\gt 0,g(x)\nearrow .g(x)\lt g(x)_{max}=g(1)=f(1)-f(1)=0$
$故g(x)\lt 0在(0,1)恒成立,\Rightarrow x_1+x_2\gt 2$
${\color{Green} 再证 x_1+x_2\lt e }$
$即证e-x_1\gt x_2\gt 1,c,这是因为f(x)在x\gt 1递减$
$即证f(x_1)\gt f(e-x_1),构造h(x)=f(x)-f(e-x)\quad证明h(x)\gt 0 在 x\in (0,1)恒成立$
$即证{\color{Red} h(x)_{min}\gt 0}$
$h(1)=f(1)-f(e-1)\gt 0\qquad{h}' (x)={f}'(x) +{f}'(e-x) =-\ln [x(e-x)]=-\ln t$
$令t=x(e-x)开口向下,对称轴为x=\cfrac{e}{2},故在(0,1)单调递增,t\in(0,e-1)$
$\therefore {h}'(x)存在零点x_0\in (0,1),在(0,x_0),{h}'(x)\gt 0,h(x)\nearrow ;在(x_0,1),{h}'(x)\lt 0,h(x)\searrow$
$故h(x)的最小值在端点,x\to 0时,h(0)=f(0)-f(e)\to 0$

二、含参可不要离

$f(x)=\ln x-ax ,其中a\gt 0,若f(x_1)=f(x_2),求证:x_1+x_2\gt \cfrac{2}{a}$
https://one.free.nf/index.php/archives/185/ 之例2

三、含参要分离:

$f(x)=x^2-2x+1+ae^x,有两个极值点x_1,x_2,求证x_1+x_2\gt 4$
${\color{Green} 有两个极值点\Leftrightarrow 导函数有两个变号零点}$
解:
${f}' (x)=2x-2+ae^x=0\Rightarrow a=\cfrac{2-2x}{e^x} 令g(x)=\cfrac{2-2x}{e^x},有g(x_1)=g(x_2)=a$
$\Rightarrow {g}' (x)=\cfrac{2(x-2)}{e^x},x\in(-\infty,2),{g}' (x)\lt 0,g(x)\searrow ;x\in(2,+\infty),{g}' (x)\gt 0,g(x)\nearrow$
$不妨设x_1\lt 2\lt x_2,要证x_1+x_2\gt 4,即证2\gt x_1\gt 4-x_2$
$即证g(x_1)\lt g(4-x_2)\Leftrightarrow g(x_2)\lt g(4-x_2)即g(x_2)- g(4-x_2)\lt 0$
$构造函数h(x)=g(x)- g(4-x)\quad 即证h(x)\gt 0在x\gt 2恒成立,即证明{\color{Red} h(x)_{max}\lt 0} $
${h}' (x)={g}' (x)+{g}' (4-x)=\cfrac{2(x-2)}{e^x}+\cfrac{2(4-x-2)}{e^{4-x}}=2(x-2)(\cfrac{1}{e^x} -\cfrac{1}{e^{4-x}})\lt 0$
$h(x)\lt h(x)_{max}=h(2)=0$

四、对称相乘:

例2、已知$f(x)=\ln x-ax,a\gt 0有两个零点x_1,x_2$,
求证:$x_1x_2\gt e^2$
https://one.free.nf/index.php/archives/185/ 之例2

五、非对称相乘:

$f(x)=\ln x -ax -1(a\in R),若f(x)+2=0$
有两个不等实根,且$x_2\gt 2x_1$,$求证:x_1x_2^2\gt \cfrac{32}{e^3},\ln 2=0.693$

用比值换元法,而不用对称构造法.
解:用比值换元法,不用对称构造消元法
$f(x)=\ln x -ax-1\Rightarrow f(x)+2=0\Rightarrow \ln x+1=ax\Rightarrow$
$a=\cfrac{\ln x+1}{x}$
$x_1x_2^2\gt \cfrac{32}{e^3} \Rightarrow 两边取对数,得\ln x_1+2\ln x_2\gt 5\ln 2-3$
比值换元:
$\because \quad x_2\gt x_1,令{\color{Red} t=\cfrac{x_1}{x_2}} \Rightarrow 0\lt t \lt \cfrac{1}{2}\Rightarrow x_1=tx_2$
$\because \quad a={\color{Green}\cfrac{\ln x_1+1}{x_1}= \cfrac{\ln x_2+1}{x_2}\Rightarrow \cfrac{x_1}{x_2}=\cfrac{\ln x_1+1}{\ln x_2+1}}$
${\color{Red}\Rightarrow t}=\cfrac{{\color{Red} \ln tx_2}+1 }{\ln x_2+1}\Rightarrow t\ln x_2+t=\ln t+\ln x_2+1$
$\Rightarrow (t-1)\ln x_2=\ln t+1-t \Rightarrow \ln x_2=\cfrac{\ln t}{t-1}-1$
$\because \quad x_1=tx_2 \quad \therefore \quad \ln x_1=\ln (tx_2)=\ln t+\ln x_2$
$\ln x_1+2\ln x_2=\ln t +3\ln x_2=3(\cfrac{\ln t}{t-1}-1)+\ln t$
$即证\cfrac{3\ln t}{t-1}+\ln t-3\gt 5\ln 2-3$
$令g(t)=\cfrac{3\ln t}{t-1}+\ln t ,即证g(t)_{min}\gt 5\ln 2\quad t \in (0,\cfrac{1}{2})$
$g(\cfrac{1}{2})=5\ln 2\quad 先求端点值$,由此可见,只需求导证g(t)单调递减,即可,由于时间问题,考试时建议耍流氓
$g(t)=\cfrac{3\ln t}{t-1}+\ln t=\cfrac{(t+2)\ln t}{t-1}$
${g}' (t)=\cfrac{(\ln t+1+\cfrac{2}{t} )(t-1)-t\ln t-2\ln t}{(t-1)^2}$
$=\cfrac{{\color{Green} t\ln t} +t+2-{\color{Blue} \ln t} -1-\cfrac{2}{t}-{\color{Green} t\ln t} -{\color{Blue} 2 \ln t} }{(t-1)^2}$
${g}' (t)= \cfrac{t+1-\cfrac{2}{t}-2\ln t}{(t-1)^2}$
$令h(t)=t+1-\cfrac{2}{t}-2\ln t$
${h}' (t)=1+\cfrac{2}{t^2}-\cfrac{2}{t} =\cfrac{t^2-2t+2}{t^2} \gt 0$
$h(t)\nearrow ,h(\cfrac{1}{2})=2\ln 2-\cfrac{5}{2}\lt 0 即{g}' (t)\lt 0,g(t)\searrow$

六、拐点偏移

$已知函数f(x)=2\ln x+x^2+x,若正实数x_1,x_2满足f(x_1)+f(x_2)=4,求证x_1+x_2\ge 2$
$f(x)=2\ln x+x^2+x$
${\color{Red} {f}'(x) } =\cfrac{2}{x}+2x+1\gt 0$
${\color{Red} {f}'(x) } =\cfrac{2}{x}+2x+1\gt 0\quad\therefore f(x)在(0,+\infty){\color{Red} \nearrow }\quad f(1)=1+1=2$
$设x_1\le 1\le x_2,要证x_1+x_2\ge 2,即证\quad x_2\ge 2-x_1\quad$
对称构造遇上对数,减小数
$\because x_2\ge 1,2-x_1\ge 1,f(x)单调递增,即f(x_2)\ge f(2-x_1)$
$又\because f(x_1)+f(x_2)=4\Rightarrow 4-f(x_1)\ge f(2-x_1)\quad 双变量变单$
$令g(x)=f(x)+f(2-x)\quad x\in (0,1]\quad 即g(x)_{max}\ge 4$
$g(1)=2f(1)=4\quad 即证g(x)在x\in (0,1]单调递增$
${g}' (x)={f}' (x)-{f}' (2-x)=\cfrac{2}{x}+2x+1-[\cfrac{2}{2-x}+2(2-x)+1]$
$=\cfrac{2}{x}-\cfrac{2}{}2-x+4x-4=\cfrac{4(1-x)}{x(2-x)}+4(x-1)$
$=4(1-x)[\cfrac{1}{x(2-x)}-1]\ge 0$
$g(x)在x\in (0,1]单调递增,g(x)有最大值g(1)=4\le 4,得证$


$已知函数f(x)=2\ln x+x^2+(a-1)x-1,(a\in \mathbb{R})当x\ge 1时,f(x)\ge 0恒成立.$
$(1)求实数a的取值范围;$
$(2) 若正实数x_1,x_2不相等且满足f(x_1)+f(x_2)=0,求证x_1+x_2\ge 2.$

$极值点偏移\begin{cases} f(x_1)=f(x_2)\\ \quad \\x_1+x_2=2x_0\end{cases}$
①构造函数,对称构造消元法
$\begin{cases} x_1+x_2\gt 2x_0 \\ \quad \\ x_1+x_2\lt 2x_0\end{cases}\qquad \Rightarrow f(x)-f(2x_0-x)$

$\begin{cases} x_1x_2\gt x_0^2 \\ \quad \\ x_1x_2\lt x_0^2\end{cases}\Rightarrow \qquad f(x)-f(\cfrac{x_0^2}{x} )$

②对数不等式:https://one.free.nf/index.php/archives/74/
$\sqrt{x_1x_2}\lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2}\lt \cfrac{x_1+x_2}{2}$
2025-04-22T10:47:13.png
$例1、函数f(x)=xe^{-x},若x_1\ne x_2,且有f(x_1)=f(x_2),$
求证:$x_1+x_2\gt 2\quad$2010年天津
$f(x_1)=f(x_2)\Rightarrow x_1e^{-x_1}=x_2e^{-x_2}\Rightarrow \ln (x_1e^{-x_1})=\ln( x_2e^{-x_2})$
$\Rightarrow \ln x_1+\ln e^{-x_1}=\ln x_2+\ln e^{-x_2}\Rightarrow \ln x_1-x_1=\ln x_2-x_2$
$\Rightarrow \ln x_1-\ln x_2=x_1-x_2\Rightarrow\cfrac{x_1-x_2}{\ln x_1-\ln x_2}=1$
$\Rightarrow\cfrac{x_1-x_2}{\ln x_1-\ln x_2}\lt \cfrac{x_1+x_2}{2}$
完整解题步骤:
${f}' (x)=\cfrac{1-x}{e^x},令 {f}' (x)=\cfrac{1-x}{e^x}=0,解得x=1;$
$即x\in (-\infty,1),{f}' (x)\gt 0,f(x)\nearrow ;$
$x\in (1,+\infty),{f}' (x)\lt 0,f(x)\searrow ;$
$\because f(x_1)=f(x_2),不妨设{\color{Red} x_1\lt 1\lt x_2,} ,$
$要证x_1+x_2\gt 2,即证1\gt x_1\gt 2-x_2\Leftrightarrow$只需证明:
${\color{Red} f(x_1)} \gt f(2-x_2)\Leftrightarrow {\color{Red} f(x_2)} \gt f(2-x_2)\Leftrightarrow {\color{Red} f(x_2)} -f(2-x_2)\gt 0$
$即只需构造g(x)=f(x)-f(2-x)$
并证明在$x\gt 1时,g(x)\gt 0恒成立即可$。
${g}' (x)={f}' (x)-{f}' (2-x){(2-x)}' =\cfrac{1-x}{e^x}+\cfrac{1-(2-x)}{e^{2-x}}$
$=\cfrac{1-x}{e^x}+\cfrac{x-1}{e^{2-x}} =(x-1)(\cfrac{1}{e^{2-x}}-\cfrac{1}{e^x})\gt 0\quad x\gt 1$
$g(x)\gt g(1)=f(1)-f(1)=0$

${\color{Red}进阶一下: }$

$(一):证明:x_1x_2\lt 1$
$(二):证明:{f}' (\cfrac{x_1+x_2}{2} )\lt 0,即证\cfrac{x_1+x_2}{2}$ 处于单调递减区间嘛
$(三):证明:x_1^2+x_2^2\gt 2\Rightarrow x_1^2+x_2^2\ge 2x_1x_2$
$\begin{cases} x_1^2+x_2^2\ge 2x_1x_2\\ x_1^2+x_2^2= x_1^2+x_2^2\end{cases}\Rightarrow 2( x_1^2+x_2^2)\ge (x_1+x_2)^2$
$(四)若x_1\lt x_2证明:x_1+2x_2\gt 3$


$例2、已知f(x)=\ln x-ax有两个零点x_1,x_2,求证:x_1x_2\gt e^2$
乍看此题目并不是极值点偏移的题型,求导可得极值为$(\cfrac{1}{a},-\ln a-1)$
对证明结论分析一下:
$x_1x_2\gt e^2\Rightarrow \ln (x_1x_2)\gt \ln e^2\Rightarrow \ln x_1+\ln x_2\gt 2;$
$f(x_1)=0\Rightarrow \ln x_1=ax_1;f(x_2)=0\Rightarrow \ln x_2=ax_2;$
$a(x_1+x_2)\gt 2 \Rightarrow x_1+x_2\gt \cfrac{2}{a}$
法一若用对数不等式证:
$f(x)=0\Rightarrow \ln x_1=ax_1\quad ①\qquad \ln x_2=ax_2\quad ②;$
$\Rightarrow ①-②=a(x_1-x_2)=\ln x_1-\ln x_2$
$\Rightarrow \cfrac{x_1-x_2}{\ln x_1-\ln x_2} =\cfrac{1}{a}\lt \cfrac{x_1+x_2}{2}$
法二常规解法:
$\because f(x)=0\Rightarrow \ln x=ax\Rightarrow a=\cfrac{\ln x}{x}\quad (零点变交点)$
有两个零点即$g(x)\cfrac{\ln x}{x}与y=a$有两个交点
${\color{Green}g(x_1)=g(x_2) } =a,证明x_1x_\gt e^2,$
$分析:不妨设{\color{Green} 0\lt x_1\lt e\lt x_2} ,e\gt x_1\gt \cfrac{e^2}{x_2}$
$g(x)在(0,e)\nearrow易证$
$\Rightarrow g(x_1)\gt g(\cfrac{e^2}{x_2})\quad 双变量不等式马上要变单变量!$
${\color{Red} \because g(x_1)=g(x_2)} \Rightarrow {\color{Red} \because g(x_2)}\gt g(\cfrac{e^2}{x_2})\qquad$这一步非常重要!
构造$F(x)=g(x)-g(\cfrac{e^2}{x})\quad x\in (e,+\infty)\quad$求导证明它大于零恒成立。
下面是证明的完整步骤:
$f(x)=\ln x-ax有两个零点x_1,x_2,即f(x)=0\Rightarrow a=\cfrac{\ln x}{x},$转变为$y=a,与g(x)=\cfrac{\ln x}{x}有两个不同的交点x_1,x_2$
${g}' (x)=\cfrac{1-\ln x}{x^2} ,令{g}'(x)=0,解得x=e,$
即当$x\in (0,e),{g}'(x)\gt 0,g(x)\nearrow : x\in (e,+\infty) {g}'(x)\lt 0,g(x)\searrow$
不妨设${\color{Green} 0\lt x_1\lt e\lt x_2}, \quad \therefore e\gt x_1\gt \cfrac{e^2}{x_2}$
${\color{Green} f(x_1)} \gt f(\cfrac{e^2}{x_2} )\Rightarrow {\color{Red} f(x_2)}\gt f(\cfrac{e^2}{x_2} )$
$注:双变量变单变量,接着构造复合函数$
$构造函数h(x)=g(x)-g(\cfrac{e^2}{x} )\quad x\in (e,+\infty)$ 注:用${\color{Green}x代替x2 }$,
${h}' (x)={g}' (x)-{g}' (\cfrac{e^2}{x} )\times {[\cfrac{e^2}{x} ]}' \quad注:复合函数求导公式$
$=\cfrac{1-\ln x}{x^2}-\cfrac{1-\ln \cfrac{e^2}{x} }{(\cfrac{e^2}{x})^2 }\times (-\cfrac{e^2}{x^2} )\quad x\gt e\therefore$
$=\cfrac{1-\ln x}{x^2}-\cfrac{1-\ln x}{e^2}=(1-\ln x)(\cfrac{1}{x^2}-\cfrac{1}{e^2})\gt 0$
$h(x)\nearrow\Rightarrow h(x)\gt h(e)=0$

函数的周期性与对称性

口诀:同周期,异对称,异异心,双对称出周期

看$x$:同周异对; 看$y,f$同号轴对称,$f$异号中心对称

周期性:

$(1)f(x+a)=f(x+b)\Rightarrow T=|a-b|;$

$(2)f(x+a)=\frac{m}{f(x)}(m\ne 0)\Leftrightarrow f(x)f(x+a)=m\Rightarrow T=2a$

$(3)f(x+a)=-f(x)+c\Leftrightarrow f(x)+f(x+a)=c\Rightarrow T=2a;$

$(4)f(x+a)=\frac{1-f(x)}{1+f(x)}\Rightarrow T=2a;$

$(5)f(x+a)=\frac{1+f(x)}{1-f(x)}\Rightarrow T=4a;$

对称性:

$(1)f(a+x)=f(a-x)\Rightarrow f(x)关于x=a对称;$

$(2)f(x)=f(2a-x)\Rightarrow f(x)关于x=a对称;$

$(3)f(a+x)=f(b-x)\Rightarrow f(x)关于x=\frac{a+b}{2}对称$

$(4)f(a+x)=-f(a-x)\Longleftrightarrow f(a+x)+f(a-x)=0$则$f(x)关于(a,0)$对称;

$(5)f(x)=-f(2a-x)\Longleftrightarrow f(x)+f(2a-x)=0则f(x)关于(a,0)对称;$

$(6)f(a+x)=-f(b-x)\Longleftrightarrow f(a+x)+f(b-x)=0则f(x)关于(\frac{a+b}{2} ,0)对称;$

$(7)f(a+x)=2c-f(b-x)\Longleftrightarrow f(a+x)+f(b-x)=2c则f(x)关于(\frac{a+b}{2} ,c)对称;$

$(8)f(x+a)是偶函数\Leftrightarrow f(x)关于x=a对称;$(复合函数的对称性)

$(9)f(x+a)是奇函数\Leftrightarrow f(x)关于(a,0)对称;$(复合函数的对称性)

1、函数$f(x)对\forall x\in \mathbb{R},满足f(x+2)=\frac{1}{f(x)} ,若f(1)=-5,则f(f(5))=(\qquad)$

$A.-5\quad B.5.\qquad C.\frac{1}{5}\qquad D.-\frac{1}{5}$

$2、已知函数f(x)是定义在R上的奇函数,且f(x+2)=-f(x),若f(1)=1,则f(3)-f(4)=(\qquad)$

$A.-1\quad B.1\qquad C.-2\qquad D.2$

$3、已知函数f(x)是定义在R上的偶函数,且f(x+4)=f(x-2),若当-3\le x \le 0时,f(x)=6^{-x},则f(919)=(\qquad)$

如果理解?$f(1+x)=f(1-x),\begin{cases}f(1)\xrightarrow{左称x}f(1+x)\\f(1)\xrightarrow{右移x} f(1-x)\end{cases}\Rightarrow f(x)关于x=1对称$

如果区分轴对称和中心对称?去掉常数$\Rightarrow$奇函数,偶函数。$f(x+2)的图像关于x=-2对称, \Rightarrow f(x)关于x=0$对称;

$f(x)为奇函数, 且f(x)=f(2-x)\Rightarrow f(x)的T=4$
双对称出周期
$(1)若函数图像关于x=a,x=b轴对称,则T=2|b-a|;$
$(2)若函数图像关于(a,0),(b,0)中心对称,则T=2|b-a|;$
$(3)若函数图像关于x=a和(b,0)对称,则T=4|b-a|;$
巳知函数$f(x)满足y=f(-x)和f(x+2)$都是偶函数,且$f(1)=1,则f(-1)+f(7)=$( )
$A.0,B.1;C.2;D.3$
已知函数$f(x)=\ln x+\ln(2-x),则$()
$A.f(x)在(0,2)单调递增。\quad B. f(x)在(0,2)单调递减。\quad C.y=f(x)的图象关于x=1对称。\quad D.y=f(x)的图像关于点(1,0)对称。$
两个函数的对称性
$f(x)与-f(x)关于x$轴对称。
$f(x)与f(-x)与关于y$轴对称。
$f(x)与f(2a-x)与关于x=a$轴对称。
$f(x)与2b-f(2a-x)关于(a,b)$对称。
$f(x)与2a-f(x)与关于y=a$轴对称。
$f(a-x)与f(x-b)与关于x=\frac{a+b}{2}$对称。