导数几题
$14、已知正实数a,b,满足ae^2(\ln b-\ln a+a-1)\ge be^a,则\cfrac{1}{b}的最小值为(\qquad)$
$类似指对分离,两边{\div} ae^2,\ln b-\ln a+a-1=\ln \cfrac{b}{a}+a-1\ge \cfrac{b}{a}e^{a-2}=e^{\ln \cfrac{b}{a}+a-2}$
${\color{Red} \because \quad } e^x\ge x+1,当且仅当x=0时取=\quad {\color{Red} \therefore \quad } e^{\ln \cfrac{b}{a}+a-2}\ge \ln \cfrac{b}{a}+(a-2)+1$
$\begin{cases} e^{\ln \cfrac{b}{a}+a-2}\ge \ln \cfrac{b}{a}+(a-2)+1\\e^{\ln \cfrac{b}{a}+a-2}\le \ln \cfrac{b}{a}+(a-2)+1\end{cases}\Rightarrow e^{\ln \cfrac{b}{a}+a-2}= \ln \cfrac{b}{a}+(a-2)+1$
$\Rightarrow \ln \cfrac{b}{a}+a-2=0\Rightarrow \ln b=\ln a+2-a,令f(a)=\ln a+2-a$
$ {f}'(a)=\cfrac{1}{a}-1=\cfrac{1-a}{a} $
$a\in (0,1)时,{f}'(a)\gt 0,f(a)\nearrow ;a\in (1,+\infty)时,{f}'(a)\lt 0,f(a)\searrow$
${\color{Red} \therefore \quad } f(a)\le f(1)=1,\Rightarrow \ln b\le 1\Rightarrow b\le e,\cfrac{1}{b}\ge \frac{1}{e}\quad {\color{Red} b_{min}=\cfrac{1}{e}}$
$自贡14题若函数f(x)=k(\ln x)^2-x有3个零点,则实数k的取值范围(\qquad)$
零点变交点,换元法
$令\ln x=t\in R,x=e^t,g(t)=kt^2-e^t,g(t)=0\Leftrightarrow kt^2=e^t,\quad \therefore \cfrac{1}{k}=\cfrac{t^2}{e^t}=h(t)$
${h}'(t)= \cfrac{t(2-t)}{e^t};\qquad t\in (-\infty,0)时,{h}'(t)\lt 0,h(t)\searrow ;$
$a\in (0,+2)时,{h}'(t)\gt 0,h(t)\nearrow;a\in (2,+\infty)时,{h}'(t)\lt 0,h(t)\searrow$
$h(0)=0,h(2)=\cfrac{4}{e^2},故\cfrac{1}{k}\in (0,\cfrac{4}{e^2}),k\in (\cfrac{e^2}{4},+\infty)$
$18、设函数f(x)=x(a+e^x)\quad a\in R,g(x)=1+\ln x,若f(x)\ge g(x)在x\in (0,+\infty)$恒成立,求实数$a$的取值范围。
key:参娈分离,朗博同构,零点变交点,隐零点
$x(a+e^x)\ge 1+\ln x\Rightarrow a\ge \cfrac{1+\ln x}{x}-e^x=\cfrac{1+\ln x-xe^x}{x}$
$=\cfrac{1+\ln x-e^{x+\ln x}}{x}=\cfrac{x+\ln x+1-e^{x+\ln x}-x}{x}\quad自证\quad x+1\le e^x$
$x+\ln x+1\le e^{x+\ln x},当且令当x+\ln x=0时取=$
$a\ge \cfrac{x+\ln x+1-e^{x+\ln x}-x}{x}\ge \cfrac{0-x}{x}=-1\quad 若x+\ln x=0成立,则上式能取得等号成立$
$设g(x)=x+\ln x,x\in (0,+\infty),g(x)单调递增,g(1)=1\gt 0,g(\cfrac{1}{e})=\cfrac{1}{e}-1\lt 0,$
$故存在g(x_0)=0在x_0\in (\cfrac{1}{e},1),即存在x_0\in (\cfrac{1}{e},1)使得a\ge \cfrac{x+\ln x+1-e^{x+\ln x}-x}{x}取=成立。$
$a\ge -1,a\in (-\infty,1]$