$1、在复平面内,复数z=(2+i)i对应的点位于第几象限;$
$2、已知集合A=\{x|-1\le x\le 2,x\in Z\},B=\{x|\cfrac{1}{x}\le 1\},A\cap B=$
$5、 已知\cfrac{\cos 2\theta}{\cos (\theta-\cfrac{\pi}{4})}=\cfrac{\sqrt{2}}{2},则\sin 2\theta$
$解:\cfrac{\cos^2\theta -\sin^2\theta}{\cos\theta +\sin\theta}=(\cfrac{\sqrt{2}}{2})^2\Rightarrow \cos \theta-\sin \theta=0.5\Rightarrow 1-\sin 2\theta=\cfrac{1}{4}$


$15、在\triangle ABC中,角A,B,C的对边分别为a,b,c,ab\cos C+ac\cos B=bc\sin A.$
$(1)证明:\sin A=\sin B\sin C$
$(2)若\tan B=2\tan C,求\tan A$
$证明:(1)\cfrac{2S_\triangle}{\sin C}\cos C+\cfrac{2S_\triangle}{\sin B}\cos B=2S_\triangle\Rightarrow \cfrac{\cos C}{\sin C}+\cfrac{\cos B}{\sin B}=1$
$\Rightarrow \cfrac{\sin B\cos C+\cos B\sin C}{\sin B\sin C}=1\Rightarrow \sin A=\sin (B+C)=\sin B\sin C$
$(2)-\tan A=\tan(\pi- A)=\tan(B+C)=\cfrac{\tan B +\tan C}{1-\tan B\tan C}$
$\Rightarrow \tan A+\tan B+\tan C=\tan A\tan B\tan C\quad 正切恒等式$
$\because \sin A=\sin (B+C)=\sin B\cos C+\cos B\sin C=\sin B\sin C$
$\times \cos B\cos C,得\tan B+\tan C=\tan B\tan C\Rightarrow 3\tan C=2\tan^2 C\Rightarrow \tan C=\cfrac{3}{2}$
$\tan A+3\tan C=\tan A\times 2\tan^2C\Rightarrow \tan A=\cfrac{7}{2}$

$解法二:\cfrac{a}{\sin A}=\cfrac{b}{\sin B}=\cfrac{c}{\sin C}\Rightarrow b\sin A=a\sin B
\quad bc\sin A=ac\sin B=ab\sin C左边$
$ac\sin B=ab\cos C+ac\cos B \Rightarrow c\sin B=b\cos C+c\cos B\Rightarrow\sin B\cos C+\cos B\sin C=\sin B\sin C$
$\Rightarrow \sin(B+C)=\sin B\sin C\Rightarrow \sin A=\sin(B+C)=\sin B\sin C$
$a\sin B\cos C+a\cos B\sin C=a\sin B\sin C \Rightarrow \sin B\cos C+\cos B\sin C=\sin B\sin C$
$两边{\div} \cos B\cos C,得\tan B+\tan C=\tan B\tan C\quad \tan B=2 \tan C\Rightarrow 3\tan C=2\tan^2C$
$\Rightarrow \tan C=\cfrac{3}{2},\tan B=3,-\tan A=\tan (\pi-A)=\tan (B+C)=\cfrac{\tan B+\tan C}{1-\tan B\tan C}= $


$16、已知椭圆C:\cfrac{x^2}{a^2}+\cfrac{y^2}{b^2}=1(a\gt b\gt 0)的左顶点为(-2,0),且离心率为\cfrac{\sqrt{3}}{2}.$
$(1)求椭圆方程:\cfrac{x^2}{4}+y^2=1$
$(2)过点(6,0)的直线l交于不同的两点PQ(异于A),记直线AP,AQ的斜率分别为k_1,k_2,求k_1k_2$
$解:点乘双根法能大大减少此题的计算量。$
$设P(x_1,y_1)Q(x_2,y_2),求k_1k_2\cfrac{y_1y_2}{(x_1+2)(x_2+2)},x_1,x_2,y_1,y_2是直线l$方程与椭圆方程的公共解。
$\begin{cases}直线l:y=k(x-6)\\ \qquad \\椭圆C:x^2+4y^2-4=0\end{cases}\Rightarrow x^2+4k^2(x-6)^2-4=0\quad ①$
$因为x_1,x_2是①式的根,因此,上式可改写成:x^2+4k^2(x-6)^2-4=(1+4k^2)(x_1-x)(x_2-x)$
$令x=-2,可得(x_1+2)(x_2+2)=\cfrac{64\times 4k^2}{1+4k^2}$
$\begin{cases} 直线l:\qquad x=my+6\\ 椭圆C:\quad x^2+4y^2-4=0\end{cases}\Rightarrow (my+6 )^2+4y^2-4=0\quad ②$
$因为y_1,y_2是②式的根,因此,上式可改写成:(my+6 )^2+4y^2-4=(m^2+4)(y_1-y)(y_2-y)$
$令y=0,可得y_1y_2=\cfrac{32}{m^2+4}$
$\because k_1k_2=\cfrac{y_1y_2}{(x_1+2)(x_2+2)}=\cfrac{\cfrac{32}{m^2+4}}{\cfrac{64\times 4k^2}{1+4k^2}}\quad \because m=\cfrac{1}{k}\Rightarrow k_1k_2=\cfrac{1}{8}$


$17、已知函数f(x)=ax^2-x\ln x,a\in R$
$(1)若函数f(x)在定义域内单调递增,求的取值范围$
$(2)若过点(0,1)可作曲线y=f(x)的两条切线l_1,l_2,记直线l_1,l_2的斜率分别为k_1,k_2,求k_1+k_2的取值范围$
$解:{f}' (x)=2ax-1-\ln x\ge0\Rightarrow 2a\ge \cfrac{1+\ln x}{x}\quad $
$令g(x)= \cfrac{1+\ln x}{x}\Rightarrow {g}' (x)=\cfrac{-\ln x}{x^2}\quad$
$x\in (0,1) \quad {g}' (x)\gt 0,g(x)\nearrow ;\qquad x\in (1,+\infty ) \quad {g}' (x)\lt 0,g(x)\searrow ;$
$\therefore g(x)在x=1处有最大值g(1)=1,2a\ge 1\Rightarrow a\ge \cfrac{1}{2}$
$解:(2)设切点坐标为(t,t(at-\ln t)),切线斜率为{f}' (t)=2at-1-\ln t,故切线方程为:$
$y-t(at-\ln t)=(2at-1-\ln t)(x-t),切线经过(0,1),故有1-t(at-\ln t)=-t(2at-1-\ln t)\Rightarrow$
$1-at^2+t\ln t=-2at^2+t+t\ln t,\Rightarrow at^2-t+1=0$
$由于x\gt 0,即切点坐标t\gt 0\therefore t_1+t_2=t_1t_2=\cfrac{1}{a},且a\gt 0\Rightarrow \Delta =1-4a\gt 0$
$0\lt a\lt \cfrac{1}{4},k_1+k_2=2a(t_1+t_2)-2-\ln(t_1+t+2)=2a\cfrac{1}{a}-2-\ln \cfrac{1}{a}=\ln a$
$0\lt a\lt \cfrac{1}{4},\therefore k_1+k_2=\ln a \in (-\infty,-2\ln2)$


$18、如图所示,在长方体ABCD-A_1B_1C_1D_1中,点M,N分别是直线AB_1,BC_1上的动点。$
$(1)若M,N分别为线段AB_1,BC_1的中点,证明:MN//平面ABCD;$
$(2)若AB=BC=3,且二面角A-B_1D_1-C的斜弦值为\cfrac{1}{3}.$
$①求AA_1;$
$②若直线MN与平面ABCD所成角为\cfrac{\pi}{3},求线段MN长度的最小值。$
$解:(1)证明:以D为坐标原点,DA,DC,DD_1分别为x,y,z$轴正方向,建立空间直角坐标系,令$DA=a,DC=b,DD_1=C,$
$则A(a,0,0),B_1(a,b,c),B(a,b,0),C(0,b,c),M(a,\cfrac{b}{2},\cfrac{c}{2}),N(\cfrac{a}{2},b,\cfrac{c}{2}),\overrightarrow{MN}=(-\cfrac{a}{2},\cfrac{b}{2},0)$
$显然平面ABCD的法向量为\vec{n} =(0,0,1),\vec{n}\cdot \overrightarrow{MN}=0,所以MN//平面ABCD $
$(2)解①A(3,0,0),B_1(3,3,c),C(0,3,0),D_1(0,0,C),\overrightarrow{AB_1}=(0,3,0),\overrightarrow{D_1B_1}=(3,3,0),\overrightarrow{CB_1}=(3,0,0)$
$平面AB_1D_1的法向量为\vec{n_1}:得\vec{n_1}\cdot \overrightarrow{AB_1}=0,\vec{n_1}\cdot \overrightarrow{D_1B_1}=0,解得\vec{n_1}=(c,-c,3)$
$平面CB_1D_1的法向量为\vec{n_2}:得\vec{n_2}\cdot \overrightarrow{CB_1}=0,\vec{n_2}\cdot \overrightarrow{D_1B_1}=0,解得\vec{n_2}=(-c,c,3)$
$\cos <\vec{n_1},\vec{n_2}>=\cfrac{\vec{n_1}\cdot\vec{n_2}}{|\vec{n_1}|\times|\vec{n_2}|}=\cfrac{|9-2c^2|}{2c^2+9}=\cfrac{1}{3},3(2c^2-9)=2c^2+9\Rightarrow c=3$
$3(9-2c^2)=2c^2+9\Rightarrow c=\cfrac{3}{2},此夹角为钝角,舍去,故可得AA_1=3$
$解②,A(3,0,0),B(3,3,0),B_1(3,3,3),C_1(0,3,3),\quad\therefore \overrightarrow{AB}=(0,3,0),\overrightarrow{AB_1}=(0,3,3),\overrightarrow{BC_1}=(-3,0,3)$
$设\overrightarrow{AM}=\lambda\overrightarrow{AB_1},\overrightarrow{BN}=\mu\overrightarrow{BC_1},\overrightarrow{MN}=\overrightarrow{AB}+\overrightarrow{BN}-\overrightarrow{AM}=(0,3,0)+\mu (-3,0,3)-\lambda (0,3,3)$
$\overrightarrow{MN}=(-3\mu,3=3\lambda,-3\lambda +3\mu)=-3(\mu,\lambda -1,\mu -\lambda),平面ABCD的法向量\vec{n}=(0,0,1)$
$\sin\cfrac{\pi}{3}=\cfrac{\sqrt{3}}{2}=\cfrac{\vec{n}\cdot \overrightarrow{MN}}{|\vec{n}||\overrightarrow{MN}|}=\cfrac{3|\mu -\lambda|}{3\sqrt{\mu^2+(\lambda-1)^2+(\mu-\lambda)^2}}$
$分析:求MN的最小值,即求3\sqrt{\mu^2+(\lambda-1)^2+(\mu-\lambda)^2}=\cfrac{3|\mu -\lambda|}{\cfrac{\sqrt{3}}{2}}=2\sqrt{3}|\mu -\lambda|的最小值,$
$由上式可知即求|\mu-\lambda|的最小值。上等式包含\mu与\lambda之间的关系,要求最值,可用\Delta法,即令t=\mu-\lambda$
$\cfrac{3}{4}=\cfrac{(\mu-\lambda)^2}{\mu^2+(\lambda-1)^2+(\mu -\lambda)^2}\Rightarrow 4\mu ^2-8\mu\lambda +4\lambda ^2 =3\mu ^2+3\lambda ^2-6\lambda +3+3\mu ^2-6\mu \lambda +3\lambda ^2$
$\Rightarrow 2\mu^2+2\lambda ^2 +2\mu \lambda -6\lambda +3=0,{\color{Red} t=\mu-\lambda,\mu=t+\lambda代入上式} $
$2(t+\lambda)^2+2\lambda ^2 +2(t+\lambda) \lambda -6\lambda +3, 展开整理为关于\lambda的一元二次方程:$
$6\lambda^2+6(t-1)\lambda+t^2+3=0,因为\lambda\in R,\Delta\ge 0,可得36(t-1)^2-4\times 6\times (t^2+3)\ge 0$
$t^2+6t+3\le 0,-3-\sqrt{6}\le t\le -3+\sqrt{6},{\color{Red} \quad\therefore 2\sqrt{3}|t|_{min}=} 2\sqrt{3}(3-\sqrt{6})=6\sqrt{3}-6\sqrt{2}$
${\color{Red}解②法二: } 设M(3,m,m),N(n,3,3-n);A(3,0,0),B(3,3,0),\overrightarrow{AM}=(0,m,m),$
$\overrightarrow{BN}=(n-3,0,3-n),平面ABCD的法向量\vec{n}=(0,0,1)$
$\overrightarrow{MN}=\overrightarrow{AB}+\overrightarrow{BN}-\overrightarrow{AM}=(0,3,0)+(n-3,0,3-n)-(0,m,m)=(n-3,3-m,3-n-m),$
$\sin \cfrac{\pi}{3}=\cfrac{\sqrt{3}}{2}=\cfrac{\vec{n}\cdot\overrightarrow{MN}}{|\vec{n}|\times|\overrightarrow{MN}|}=\cfrac{|3-n-m|}{\sqrt{(n-3)^2+(3-m)^2+(3-n-m)^2}}$
$\cfrac{3}{4}=\cfrac{(3-n-m)^2}{(n-3)^2+(3-m)^2+(3-n-m)^2}\Rightarrow 3[(n-3)^2+(3-m)^2+(3-n-m)^2]=4(3-n-m)^2$
$3(n-3)^2+3(m-3)^2=(3-n-m)^2,(n-3)^2+(m-3)^2\ge \cfrac{(6-n-m)^2}{2}$
$\Rightarrow (3-n-m)^2\ge \cfrac{3}{2}\times(3-n-m)^2,换元,令t=n+m$
$2(3-t)^2\ge 3(6-t)^2\Rightarrow t^2-24t+90\le 0\Rightarrow 12-3\sqrt{6}\le t\le 12+3\sqrt{6}$
$|\overrightarrow{MN}|=\cfrac{2\sqrt{3}}{3}|3-t|\Rightarrow 9-3\sqrt{6}\le t-3\le 9+3\sqrt{6}$
$\Rightarrow \cfrac{2\sqrt{3}}{3}(9-3\sqrt{6})\le \cfrac{2\sqrt{3}}{3}(t-3)\le \cfrac{2\sqrt{3}}{3}(9+3\sqrt{6})\Rightarrow 6(\sqrt{3}-\sqrt{2})\le |\overrightarrow{MN}|\le 6(\sqrt{3}+\sqrt{2})$
$故|\overrightarrow{MN}|最小值为6(\sqrt{3}-\sqrt{2})$

标签: none

添加新评论