?v=1.1

一、阶差法:

典例 $证明:\ln (n+1)+\cfrac{n}{2(n+1)}\lt 1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots ++\cfrac{1}{n}$
$解答:设S_n=\ln (n+1)+\cfrac{n}{2(n+1)},a_n=\ln \cfrac{n+1}{n}+\cfrac{n}{2(n+1)}-\cfrac{n-1}{2n}$
$要证\ln (n+1)+\cfrac{n}{2(n+1)}\lt 1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots ++\cfrac{1}{n},即证\ln \cfrac{n+1}{n}+\cfrac{n}{2(n+1)}-\cfrac{n-1}{2n}\lt \cfrac{1}{n}$
$整理得\ln \cfrac{n+1}{n}\lt \cfrac{1+n}{2n}-\cfrac{n}{2(n+1)}$
$令x=\cfrac{n+1}{n}\gt 1,构造\ln x\lt \cfrac{1}{2}(x-\cfrac{1}{x}),易证其恒成立。$
$在数列中我们学过求通项的方法:阶差法,即S_n-S_{n-1}=a_n.$
$在数列不等式的证明题中,我们可以将一串不等式为通项的前项和,从而在本题中可以$
$设S_n=\ln (n+1)+\cfrac{n}{2(n+1)},由阶差法法计算得a_n=\ln \cfrac{n+1}{n}+\cfrac{n}{2(n+1)}-\cfrac{n-1}{2n},$
$同理可得前n项和1+\cfrac{1}{2}+\cfrac{1}{3}+\cdots +\cfrac{1}{n}的通项公式为\cfrac{1}{n},因此证明\ln \cfrac{n+1}{n}+\cfrac{n}{2(n+1)}-\cfrac{n-1}{2n}\lt \cfrac{1}{n}即可$
这种方法证明数列不等式是非常常用的一种。
$精练2:n\in N^*,证明:\cfrac{1}{\sqrt{1^2+1}}+\cfrac{1}{\sqrt{2^2+1}}+\cfrac{1}{\sqrt{3^2+1}}+\cfrac{1}{\sqrt{4^2+1}}+\cdots+\cfrac{1}{\sqrt{n^2+n}}\gt \ln (n+1)$
此题为2022年高考2卷22题第三问。
$原题:已知f(x)=xe^{ax}-e^x.$
$(1)当a=1时,f(x)的单调性;$
$(2)当x\gt 0时,f(x)\lt -1,求a的取值$
$(3)n\in N^*,证明:\cfrac{1}{\sqrt{1^2+1}}+\cfrac{1}{\sqrt{2^2+1}}+\cfrac{1}{\sqrt{3^2+1}}+\cfrac{1}{\sqrt{4^2+1}}+\cdots+\cfrac{1}{\sqrt{n^2+n}}\gt \ln (n+1)$
$此题还可以扩展为:$
$(1)当a=1时,f(x)的单调性;$
$(2)证明当x\gt 0时,总有\ln (x+1)\lt x;$
$(3)若0\lt a\le \cfrac{1}{2},求证:(1+ax)e^{ax}-e^x\le0$;
$(4)当x\gt 0时,f(x)\lt -1,求a的取值$
$(5)在(3)的条件下,当a=\cfrac{1}{2}时,xe^{\cfrac{1}{2}x}-e^x+1\lt 0,令t=e^{\cfrac{1}{2}x},化简上式并用对数式表示;$
$(6)求证:\ln (n+1)-\ln n\lt \cfrac{1}{\sqrt{n^2+n}}(n\in N^*);$
$(7)n\in N^*,证明:\cfrac{1}{\sqrt{1^2+1}}+\cfrac{1}{\sqrt{2^2+1}}+\cfrac{1}{\sqrt{3^2+1}}+\cfrac{1}{\sqrt{4^2+1}}+\cdots+\cfrac{1}{\sqrt{n^2+n}}\gt \ln (n+1)$


$设S_n=\ln (n+1),a_n=S_n-S_{n-1}=\ln (n+1)-\ln n即证\cfrac{1}{\sqrt{n^2+n}}\gt\ln (n+1)-\ln n $
利用对数均值不等式,易得证
$\cfrac{n+1-n}{\ln (n+1)-\ln n }\gt \sqrt{(n+1)n}\Rightarrow \cfrac{1}{\sqrt{n^2+n}}\gt\ln (n+1)-\ln n$


二、放缩法:
$放缩法常用式:e^x\ge x+1;x-1\ge \ln x;x\ge \sin x,x\in [0,+\infty)$
$典例(全国卷)已知函数f(x)=x-1-a\ln x.$
$(1)若f(x)\ge 0,求a的值.$
$(2)设m为整数,且对于任意正整数n,(1+\cfrac{1}{2})(1+\cfrac{1}{2^2})\cdots 1+\cfrac{1}{2^n}\lt m,求m的最小值.$
$解答:(1)f(x)的定义域为(0,+\infty).$
$①若a\le 0,因为f(\cfrac{1}{2} )=-\cfrac{1}{2} +a\ln x\lt 0,故不满足题意;$
$②若a\gt 0,由{f}' (x)=1-\cfrac{a}{x}知当x\in (0,a),{f}' (x)\lt 0;当x\in (a,+\infty)时,{f}' (x)\gt 0,$
$所以f(x)在(0,a)上\searrow;在(a,+\infty)上\nearrow.故当x=a是f(x)在(0,+\infty )上的最小值点。$
$由f(1)=0,因此,当且位仅当 a=1时f(x)\ge 0.故a=1.$
$(2)由(1)知当x\in(1,+\infty),x-1-\ln x\gt 0.$
$令x=1+\cfrac{1}{2^n},得\ln (1+\cfrac{1}{2^n)} \lt \cfrac{1}{2^n}$
$从而\ln (1+\cfrac{1}{2})+\ln (1+\cfrac{1}{2^2})+\cdots+\ln (1+\cfrac{1}{2^2})\lt \cfrac{1}{2}+\cfrac{1}{2^2}+\cdots +\cfrac{1}{2^n}=1-\cfrac{1}{2^n}\lt 1$
$故(1+\cfrac{1}{2})(1+\cfrac{1}{2^2})\cdots (1+\cfrac{1}{2^n})\lt e,而(1+\cfrac{1}{2})(1+\cfrac{1}{2^2})(1+\cfrac{1}{2^3})\gt 2$
$所以m的最小值为3$

$好题精练1:证明n\ge 2,n\in N^*,时(1+\cfrac{1}{2^2})(1+\cfrac{1}{3^2})(1+\cfrac{1}{4^2})\cdots (1+\cfrac{1}{n^2})\lt 1$
$分析:两边取自然对数,\ln (1+\cfrac{1}{2^2})+\ln (1+\cfrac{1}{3^2})+\ln (1+\cfrac{1}{4^2})+\cdots+\ln (1+\cfrac{1}{n^2})\lt 1$
$\ln (1+x)\le x恒成立,当且仅当x=1取=,\cfrac{1}{n^2}\lt \cfrac{1}{(n-1)n}$
$解:\ln (1+\cfrac{1}{2^2})+\ln (1+\cfrac{1}{3^2})+\ln (1+\cfrac{1}{4^2})+\cdots+\ln (1+\cfrac{1}{n^2})\lt\cfrac{1}{2^2}+\cfrac{1}{3^2}+\cfrac{1}{4^2}+\cdots +\cfrac{1}{n^2}$
$\lt \cfrac{1}{1\times 2}+\cfrac{1}{2\times 3}+\cfrac{1}{3\times 4}+\cdots +\cfrac{1}{(n-1)n}=1-\cfrac{1}{n}\lt 1$


$好题精练2:已知函数f(x)=(x+2)\ln (x+2),g(x)=x^2+(3-a)x+2(1-a)(a\in R)$
$(1)函数f(x)的极值。$
$(2)若不等式f(x)\ge g(x)在(-2,+\infty)上恒成立,求a的取值范围$
$(3)证明:(1+\cfrac{1}{4})(1+\cfrac{1}{4^2})\cdots (1+\cfrac{1}{4^n})\lt e^\frac{1}{3}(n\in N^*).$
$解:(1){f}' (x)=\ln (x+2)+1,由{f}' (x)\gt 0可得x\gt \cfrac{1}{e}-2,则f(x)在(\cfrac{1}{e}-2,+\infty)上单调递增;$
$由{f}' (x)\lt 0可得x\lt \cfrac{1}{e}-2,则f(x)在(-2,\cfrac{1}{e}-2)上单调递减。$
$所以当x= \cfrac{1}{e}-2时,f(x)取得极小值,极小值为-\cfrac{1}{e},无极大值.$
$(2)分离参数后,构造函数,通过求函数的最小值确定参数a的取值范围.$
$由不等式f(x)\ge g(x)在(-2,+\infty)上恒成立,得(x+2)\ln (x+2)\ge x^2+(3-a)x+2(1-a)$
$(x+2)\ln (x+2)\ge (x+2)(x+1-a),x\in (-2,+\infty),x+2\gt 0$
$a\le x+1-\ln(x+2)在x\in (-2,+\infty)上恒成立$
$设h(x)=x+1-\ln(x+2),{h}' (x)=1-\cfrac{1}{x+2}=\cfrac{x+1}{x+2},令{h}' (x)=0,得x=-1,$
$当x\in (-2,-1)时,{h}' (x)\lt 0,所以h(x)在(-2,-1)上单调递减;$
$当x\in (-1,+\infty)时,{h}' (x)\gt 0,所以h(x)在(-1,+\infty)上单调递增;$
$所以h(x)_{min}=h(-1)=0,则a\le 0,所以a的取值范围为(-\infty,0].$
$(3)令x+1=4^n,则\ln(1+\cfrac{1}{4^n})\lt \cfrac{1}{4^n}$
$所以\ln(1+\cfrac{1}{4})+\ln(1+\cfrac{1}{4^2})+\cdots +\ln(1+\cfrac{1}{4^n})\lt \cfrac{1}{4}+\cfrac{1}{4^2}+\cdots+\cfrac{1}{4^n}=\cfrac{1}{3}(1-\cfrac{1}{4^n}),$
$即\ln[(1+\cfrac{1}{4})(1+\cfrac{1}{4^2})\cdots(1+\cfrac{1}{4^n})]\lt \cfrac{1}{3}(1-\cfrac{1}{4^n})$


2025-09-02T08:32:34.png

三、裂项法:

2025-09-02T08:34:26.png
2025-09-02T08:35:06.png
$\qquad\lt \cfrac{2}{e}(1^2+\cfrac{1}{2^2}+\cfrac{1}{3^2} +\dots+\cfrac{1}{n^2} ) $
2025-09-02T08:37:46.png
2025-09-02T08:38:17.png
2025-09-02T08:39:19.png

四、构造函数:

2025-09-02T08:41:03.png
2025-09-02T08:41:41.png
2025-09-02T08:42:23.png

五、最值型证明

2025-09-02T08:44:27.png
2025-09-02T08:45:01.png

六、累加型证明
---2025-09-02T08:47:39.png----
2025-09-02T08:48:15.png
七、数学归纳法:
2025-09-02T08:49:46.png
2025-09-02T08:50:22.png

标签: none

仅有一条评论

  1. [...]$例1.雅礼中学26届高三月考卷五18.已知函数f(x)=\ln x,a\in \mathbb{R}$$(2)当a\gt 0jf ,\forall x\in [1,+\infty),均有af(x)+(x+1)^2-\cfrac{x^2}{a}\le 0恒成立,$$求实数a的取值范围。$$解:(2) 对\forall x\in [1,+\infty),均有g(x)=af(x)+(x+1)^2-\c[...]

添加新评论