数列不等式过时技巧
1、裂项处理:
例1、2018年天津理科数学18题(2)
$证明:\sum_{n}^{k=1}\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)} =\cfrac{2^{n+2}}{n+2}-2$
设裂项的形式为: $\cfrac{a\cdot 2^{k+2}}{k+2}- \cfrac{a\cdot2^{k+1}}{k+1}=\cfrac{k\cdot 2^{k+1}}{(k+1)(k+2)}$
$代入得a=1,则a=1对应的表达式即为所求。$
分析:其实这题只是求和,但是很好的说明了一种探究数列裂项方式——待定系数.在解题时根据待证表达式的特征确定裂项的形式和需要待定的系数,再利用等号成立的条件对应系数得到结果. 对于涉及裂项的数列不等式问题,给出的数列求和往往极限是所需证明的结果.