高中常见放缩有哪些?

大的变小,小的变大
$①不等式:均值不等式,柯西不等式,对数均值不等式$
$②三角放缩,x\ge \sin x(x\ge 0),导数97练习1$
$根据凹凸性,{\color{Red} (导函数单调递减,原函数是凸函数;导函数单调递增,原函数是凹函数)} {\color{Green} \Rightarrow }$
$\begin{cases} {\color{Green} x\in (0,\cfrac{\pi}{2}):\quad \sin x\gt \cfrac{2}{\pi} x;} \\{\color{Red} x\in (0,\cfrac{\pi}{6}):\quad\sin x\gt \cfrac{3}{\pi} x} \end{cases}$
$③指对放缩,e^x\ge x+1\Rightarrow e^{x-1}\ge x\quad (e^x\ge ex)\overset{两边取对数}{\rightarrow} x\ge ln(x+1),x-1\ge ln x$
${\color{Red} e^x\lt \cfrac{1}{1-x}\quad (0\lt x\lt 1),\ln x\gt 1-\cfrac{1}{x} } 导数89页例4,94页$
$④对数均值不等式$
$⑤飘带不等式x-\cfrac{1}{x}(\qquad)2\ln x当 x\gt 1时,取\gt ,当x\lt 1 取\lt; \overset{两边\times x}{\rightarrow} x^2-1\gt 2x\ln x(x\gt1)$
$⑥$

$例1、e^x+\ln x+\cfrac{3}{x}\gt \cfrac{4}{\sqrt{x} } $
$解:令f(x)=e^x-x-1,f(0)=0,{f}' (x)=e^x-1,x\gt 0:{f}' (x)\gt 0,f(x)在x\in (0,+\infty)\nearrow$
$在[0,+\infty):x\ge \ln (x+1),x-1\ge \ln x,\cfrac{1}{x} -1\ge \ln \cfrac{1}{x} \Rightarrow \ln x\ge 1-\cfrac{1}{x}$
$要证原式,仅证x+1+1-\cfrac{1}{x}+\cfrac{3}{x} \gt \cfrac{4}{\sqrt{x} } $
$x^2+2x-4\sqrt{x} +2\gt 0\Rightarrow (x+1)^2-4\sqrt{x}+1\gt 0\Rightarrow (x+1)^2-2\cdot 2\sqrt{x}+1\gt 0 $
$(x+1)^2\ge (2\sqrt{x} )^2,(x+1)^2-2\cdot 2\sqrt{x}+1\ge (2\sqrt{x} )^2-2\cdot 2\sqrt{x}+1=(2\sqrt{x} -1)^2$
$前者当x=1取=,后者当x=\cfrac{1}{4} 时取=,所以e^x+\ln x+\cfrac{3}{x}\gt \cfrac{4}{\sqrt{x} }成立$
$例2、e^x-x-1\gt 2x\ln x$
$分析:e^x-x-1在x\gt 1时,恒大于0,2x\ln x并不是恒正数。因为飘带x^2-1\gt 2x\ln x(x\gt 1),$
$6-10备注下:只需证e^x-x-1\ge x^2-1即可,即e^x-x^2-x\gt 0即可,x\gt 1,e^x-2\gt 0,不需要引入虚设零点的$
$解:x\in (0,+\infty),令f(x)=e^x-x-1,f(0)=0,{f}'(x)=e^x-1\gt 0,f(x)\nearrow ,f(x)\gt f(0)=0,
\Rightarrow e^x-x-1\gt 0$
$①x\in (0,1],2x\ln x\lt 0\lt e^x-x-1,显然成立。$
$②x\in (1,+\infty):令g(x)=e^x-x-x^2,{g}' (x)=e^x-2x-1,令h(x)=e^x-2x-1,{h}' (x)=e^x-2$
$x\gt 1,令g(x)=e^x-x^2-x,即证{\color{Red} g(x)_{min}\gt 0}$
$令h(x)={g}' (x)=e^x-2x-1,{h}' (x)=e^x-2\gt 0\quad (x\gt1)$
$\Rightarrow h(x)={\color{Red} {g}' (x)\nearrow } \Rightarrow {g}' (x)\gt {g}' (1)=e-3\lt 0$
${g}' (\cfrac{3}{2} )=e^{\cfrac{3}{2} }-4= e^{2\times\frac{3}{4}}-4\gt e^{2\ln2}-4= 0$
$所以\exists x_0\in (1,\cfrac{3}{2})使得{g }' (x_0)=0,\Rightarrow e^{x_0}=2x_0+1$
$所以x\in (1,x_0),{g }' (x)\lt 0,\quad g(x)\searrow ;$
$x\in (x_0,+\infty),{g }' (x)\gt 0,\quad g(x)\nearrow;$
$g(x)\ge {\color{Red} g(x_0)=e^{x_0}-x_0^2-x_0=-x_0^2+x_0+1}$
$g(x_0)的对称轴为x=\cfrac{1}{2},故x_0\in (1,\cfrac{3}{2}), g(x_0)\searrow ,即$
$设H(x_0)={\color{Red} g(x_0)=e^{x_0}-x_0^2-x_0=-x_0^2+x_0+1}\quad (1\lt x_0\lt \cfrac{3}{2} )$
$它的对称轴在x=\cfrac{1}{2},在(1,\cfrac{3}{2}){\color{Red} \searrow } ,所以H(x_0)\gt H(\cfrac{3}{2})=\cfrac{1}{4}\gt 0$
$故得g(x)\gt 0,得证,再证飘带不等式。 $
$再证飘带不等式,x\gt 1时,x-\cfrac{1}{x}\gt 2\ln x{\color{Red} \Rightarrow } x^2-1\gt2x\ln x $

标签: none

添加新评论