双变量问题
一、主元法:
未知数的关系
$(1)题目中显现,+-\times \div$
$(2)未知数之间的控制关系:
$\begin{cases} ①自由\\ ②捆绑,f(x)=\cfrac{\ln x}{x}=a,此时x_1,x_2捆绑关系 \end{cases}$
$\begin{cases} \quad①地位相同 \\ \quad \\ \quad ②地位不相同2x_1+x_2与x_1+2x_2\end{cases}$
$证明对数不等式ALG:\sqrt{x_1x_2} \lt \cfrac{x_1-x_2}{\ln x_1-\ln x_2} \lt\cfrac{x_1+x_2}{2}$
未知数关系:(1)自由、(2)地位相同
$先证左侧不等式:不妨设:x_1\gt x_2\Rightarrow \ln x_1\gt \ln x_2\Leftrightarrow \ln x_1- \ln x_2\lt \cfrac{x_1-x_2}{\sqrt{x_1x_2} }$
此时可换元,但我们考虑新方法,叫做主元法:
${\color{Red}把x_1视为主元,即自变量,x_2看作是常数、参数 }$
$x_1\in(x_2,+\infty)\quad \because x_1\gt x_2$
$即证:f(x_1)=\ln x_1-\ln x_2-\cfrac{x_1}{\sqrt{x_1} } +\cfrac{x_2}{\sqrt{x_2} } \Leftrightarrow f(x_1)\lt 0$
${\color{Green} 这里x_1是自变量,x_2是参数,常数} $
$显然有f(x_2)=\ln x_2-\ln x_2-\cfrac{x_2}{\sqrt{x_2} } +\cfrac{x_2}{\sqrt{x_2} } =0$
$这里是把作为常数的x_2代入x_1为自变量的上式中的x_1。$
$只需证f(x_1)在(x_2,+\infty)单减$
${f}' (x_1)=\cfrac{1}{x_1} -\cfrac{1}{\sqrt{x_2}} \cdot \cfrac{1}{2\sqrt{x_1} } +\sqrt{x_2} (-\cfrac{1}{2}\cdot \cfrac{1}{x_1^{ \frac{3}{2}} } )$
$=\cfrac{2\sqrt{x_2}\cdot \sqrt{x_1} -x_1-\sqrt{x_2} \sqrt{x_2} }{2\sqrt{x_2} \cdot x_1^{\frac{3}{2} }}$
$= \cfrac{2\sqrt{x_1x_2}-x_1-x_2 }{2\sqrt{x_2} \cdot x_1^{\frac{3}{2} }}=-\cfrac{(\sqrt{x_1}-\sqrt{x_2})^2 }{2\sqrt{x_2} \cdot x_1^{\frac{3}{2} }}\lt 0$
$\therefore f(x_1)在(x_2,+\infty )单减,\Rightarrow f(x_1)\lt f(x_2)=0$
$例1、已知f(x)=e^x\ln (x+1),其导函数在[0,+\infty)单增,证明:$
$对于\forall s,t\in (0,+\infty),f(s+t)\gt f(s)+f(t)$
分析:s,t自由,地位相同
$解:本题即证:H(x)=f(s+t)-f(s)-f(t)在 (0,+\infty)大于0$
${\color{Red}把s视为主元,即自变量,t看作是常数、参数 }$
$H(0)=f(0+t)-f(0)-f(t)在 (0,+\infty)=0=f(0)=0$
$\because f(0)=e^0\cdot 0=0$
$只需证H(s)在(0,+\infty)单增$
{H}' (s)={f}'(s+t) -{f}'(s)
$又\because s+t\gt s,f(x)导函数在[0,+\infty)单增$
$\Rightarrow {H}' (s)={f}'(s+t) -{f}'(s) \gt 0\Rightarrow$
$H(s)在(0,+\infty)\nearrow ,H(s)\gt H(0)=0,故原式成立。$
二、换元法
${\color{Red} 换元法包括 } \begin{cases} \quad 换函数分析\\\quad\\ \quad 换未知数分析\end{cases}$
换函数分析
$例1、g(x)=\cfrac{1-e^x}{x} ,\forall x_1,x_2\in [1,e],\cfrac{g(x_1)-g(x_2)}{x_1-x_2} \lt \cfrac{m}{x_1x_2}恒成立,求m的取值范围$
$x_1,x_2自由,且地位相同,(主元法不好弄)$
$解:不妨设x_1\gt x_2, x_1-x_2\gt 0\Rightarrow g(x_1)-g(x_2)\lt \cfrac{m(x_1-x_2)}{x_1x_2} =\cfrac{m}{x_2}-\cfrac{m}{x_1}$
$g(x_1)-g(x_2)\lt \cfrac{m}{x_2}-\cfrac{m}{x_1}$
$\Rightarrow g(x_1)+\cfrac{m}{x_1}\lt g(x_2)+\cfrac{m}{x_2}$
$设f(x)=g(x)+\cfrac{m}{x},f(x_1)\lt f(x_2)说明f(x)在[1,e]\searrow$
$即 {f}' (x)={g}' (x)-\cfrac{m}{x^2}\le 0在在[1,e]恒成立$
$\cfrac{e^x-1-xe^x}{x^2} -\cfrac{m}{x^2}\le 0\Rightarrow e^x-1-xe^x\le m$
$令h(x)=(1-x)e^x-1,x\in [1,+\infty),h(x)_{max}\le m$
${h}' (x)=e^x(1-x-1)=-xe^x\lt 0$
$h(x)在[1,e]单减,m\ge h(1)=-1$
$\therefore m\in [-1,\infty)$
$例2、f(x)=x^2+2\ln (x+1)-ax,若m,n\in (-1,+\infty) ,且\cfrac{f(m)-f(n)}{m-n} \gt \cfrac{1}{2} 恒成立,求a的取值范围。$
$解:不妨设m\gt n,f(m)-f(n)\gt \cfrac{1}{2} (m-n)$
$f(m)-\cfrac{1}{2} m\gt f(n)-\cfrac{1}{2} n$
$令g(x)=f(x)-\cfrac{1}{2} x,g(m)\gt g(n)$
$g(x)在[-1,+\infty)\nearrow ,{g}' (x)={f}' (x)-\cfrac{1}{2} \ge 0$
$2x+\cfrac{2}{x+1} -a-\cfrac{1}{2}\ge 0 在(-1,+\infty)恒成立。$
$a\le 2x+\cfrac{2}{x+1} -\cfrac{1}{2}=2(x+1)+\cfrac{2}{x+1} -2-\cfrac{1}{2}$
$2(x+1)+\cfrac{2}{x+1} -2-\cfrac{1}{2}\ge 2\sqrt{4} -\cfrac{5}{2}=\cfrac{3}{2}$
$当2(x+1)=\cfrac{2}{x+1},即x=0时等号成立,a\in (-\infty,\cfrac{3}{2}]$
换未知数分析
例1:ALG
$例2、a\ge 3已知f(x)=\ln x+x^2-ax有两个极值点x_1,x_2,x_1\lt x_2$
$证明 :f(x_1)-f(x_2)\ge \cfrac{3}{4} -\ln 2$
$x_1x_2①不自由②地位不相同,因而不能用主元法;$
$解:{f}' (x)=\cfrac{1}{x} +2x-a=\cfrac{2x^2-ax+1}{x}=0\quad有两个实根x_1,x_2,且x_1\lt x_2$
$\Rightarrow 2x^2-ax+1=0,\bigtriangleup =a^2-8\gt 0 \begin{cases} \quad x_1+x_2=\cfrac{a}{2}\\ \quad \\ \quad x_1x_2=\cfrac{1}{2} \end{cases}{\color{Green} \Rightarrow } \begin{cases} \quad {\color{Orange} 2(x_1+x_2)=a} \\ \quad \\ \qquad {\color{Orange}2x_1x_2=1 } \end{cases}$
$f(x_1)-f(x_2)=\ln x_1+x_1^2-ax_1-(\ln x_1+x_2^2-ax_1)=\ln \cfrac{x_1}{x_2}+x_1^2-x_2^2-a(x_1-x_2)$
$分析上式,欲进行齐次换元,只有对数一项是齐次的,后面分别是二次项和一次项。$
$题目中并无条件可利用的条件,除了两个极值点外。$
$观察导函数为零时,由韦达定理得到两个式子的,$
$它们其实就是联系一次项与a,二次项与常数的桥梁$
$\ln \cfrac{x_1}{x_2}+x_1^2-x_2^2-{\color{Orange} a} (x_1-x_2)=\ln \cfrac{x_1}{x_2}+x_1^2-x_2^2-{\color{Orange}2(x_1+x_2) } (x_1-x_2)$
$=\ln \cfrac{x_1}{x_2}-(x_1^2-x_2^2)=\ln \cfrac{x_1}{x_2}-\cfrac{(x_1^2-x_2^2)}{{\color{Orange} 2x_1x_2}}$
$现在已经可以齐次化了,达到了换元的先决条件$
$=\ln \cfrac{x_1}{x_2}-\cfrac{\cfrac{x_1^2}{x_2^2} -1}{\cfrac{x_1}{x_2} } =\ln t-\cfrac{1}{2}(t-\cfrac{1}{t})$
$令t=\cfrac{x_1}{x_2},那么t的取值范围为多少呢?$
$我们目光还要回到韦达定理,题目中a\ge 3,就是说,x_1+x_2\gt {\color{Orange}\cfrac{3}{2} } $
$我们如何从两数和的范围及积为定值得到两数之比的范围?还是齐次化手段!$
$x_1+x_2=\cfrac{a}{2}\ge \cfrac{3}{2} \Rightarrow {\color{Orange} \cfrac{(x_1+x_2)^2}{1}}\ge \cfrac{9}{4} \Rightarrow$
$\Rightarrow \cfrac{(x_1+x_2)^2}{{\color{Orange} 2x_1x_2} } \ge \cfrac{9}{4} \Leftrightarrow \cfrac{(x_1+x_2)^2}{x_1x_2} \ge \cfrac{9}{2} $
$2t-5+\cfrac{2}{t} \ge 0\Rightarrow 2t^2-5t+2 \ge 0\Rightarrow (2t-1)(t-2)\ge 0$
$解得0\lt t \le \cfrac{1}{2}$
$令g(t)=\ln t -\cfrac{1}{2}(t-\cfrac{1}{t})$
$g(\cfrac{1}{2} )=\ln \cfrac{1}{2} -\cfrac{1}{2} (\cfrac{1}{2} -2)=\cfrac{3}{4}-\ln 2$
${g}' (t)=\cfrac{1}{t} -\cfrac{1}{2} (1+\cfrac{1}{t^2})=-\cfrac{(t-1)^2}{t^2}\lt 0,{\color{Red} g(t)\searrow } $
$g(t)\ge g(\cfrac{1}{2} )=\cfrac{3}{4} -\ln 2$
练习:
$f(x)=2-\cfrac{2(a+1)}{x+a} -\ln x,0\lt a \lt 1有两个极值点x_1,x_2,求证:$
$\cfrac{f(x_2)-f(x_1)}{x_2-x_1}\lt \cfrac{1}{a}-\cfrac{2}{a+1}$
解:${f}' (x)=\cfrac{2(a+1)}{(x+a)^2} -\cfrac{1}{x} =\cfrac{2(a+1)x-(x+a)^2}{x(x+a)^2} $
$\cfrac{2(a+1)x-(x^2+2ax+a^2)}{x(x+a)^2} =\cfrac{-x^2+2x-a^2}{x(x+a)^2}$
$\Rightarrow{\color{Green} \begin{cases} x_1+x_2=2\\ x_1x_2=a^2\end{cases}}$
$f(x_2)-f(x_1)=2-\cfrac{2(a+1)}{x_2+a} -\ln x_2-(2-\cfrac{2(a+1)}{x_1+a} -\ln x_1)$
$=\cfrac{2(a+1)}{x_1+a}-\cfrac{2(a+1)}{x_2+a} +\ln x_1-\ln x_2=\ln \cfrac{x_1}{ x_2} +2(a+1)\times \cfrac{x_2+a-(x_1+a)}{(x_1+a)(x_2+a)}$
$=\ln \cfrac{x_1}{ x_2} + \cfrac{2(a+1){\color{Green} (x_2-x_1)} }{(x_1+a)(x_2+a)}$
$\because \cfrac{f(x_2)-f(x_1)}{x_2-x_1}=\cfrac{\ln \cfrac{x_1}{ x_2}}{x_2-x_1} + \cfrac{2(a+1)}{(x_1+a)(x_2+a)} $
$(x_1+a)(x_2+a)={\color{Red} x_1x_2} +a{\color{Red} (x_1+x_2)} +a^2={\color{Red} a^2} +{\color{Red} 2}a+a^2=2a^2+2a$
$\cfrac{f(x_2)-f(x_1)}{x_2-x_1}=-\cfrac{\ln \cfrac{x_1}{ x_2}}{{\color{Green} x_1-x_2} } + \cfrac{2(a+1)}{2a(a+1)}$
$\cfrac{f(x_2)-f(x_1)}{x_2-x_1}=-\cfrac{\ln \cfrac{x_1}{ x_2}}{{\color{Green} x_1-x_2} } + \cfrac{1}{a}\lt \cfrac{1}{a}-\cfrac{2}{a+1}$
${\color{Orange} \Leftrightarrow } \cfrac{\ln \cfrac{x_1}{ x_2}}{{\color{Green} x_1-x_2} } {\color{Red} \gt }\cfrac{2}{a+1}$
$不妨设x_1\gt x_2,\Leftrightarrow \cfrac{\ln \cfrac{x_1}{ x_2}}{{\color{Green} 2} } {\color{Red} \gt }\cfrac{x_1-x_2}{a+1}$
$\because {\color{Green} \begin{cases} x_1+x_2=2\\ x_1x_2=a^2\end{cases}}$
$=\cfrac{x_1-x_2}{a+1}=\cfrac{x_1-x_2}{\sqrt{x_1x_2}+\cfrac{x_1+x_2}{2} } =\cfrac{\cfrac{x_1}{x_2} -1}{\sqrt{\cfrac{x_1}{x_2}} +\cfrac{\cfrac{x_1}{x_2}+1}{2} }$
$令t=\sqrt{\cfrac{x_1}{x_2} } ,t\gt 1$
$\cfrac{1}{2}\ln t^2 \gt \cfrac{t^2 -1}{t+\cfrac{t^2+1}{2} }=\cfrac{2(t^2-1)}{(t+1)^2} =\cfrac{2(t-1)}{t+1} \quad (t\gt 1)$
${\color{Purple} \Leftrightarrow } \ln t \gt \cfrac{2(t-1)}{t+1} $
$7-15增加一题:$
$已知函数f(x)=-ax^2+x-\ln x,a\gt0,若f(x)在定义域内有两个极值点x_1,x_2,求证:f(x_1)+f(x_2)\gt3-\ln 2$
${f}' (x)=-2ax+1-\cfrac{1}{x}=\cfrac{-2ax^2+x-1}{x}$
$\Delta =1^2-4(-2a)(-1)=1-8a\gt 0\Rightarrow a\lt a\lt \cfrac{1}{8}$
${\color{Green} \begin{cases} x_1+x_2=\cfrac{-1}{-2a}=\cfrac{1}{2a} \\x_1x_2=\cfrac{1}{2a} \end{cases}} $
$f(x_1)+f(x_2)=-a(x_1^2+x_2^2)+(x_1+x_2)-\ln x_1-\ln x_2=-a(\cfrac{1}{4a^2} -\cfrac{1}{a})+\cfrac{1}{2a}+\ln 2a$
$\Rightarrow f(x_1)+f(x_2)=1+\cfrac{1 }{4a} +\ln 2a \quad 0\lt a\lt \cfrac{1}{8}$
$设h(a)=1+\cfrac{1 }{4a} +\ln 2a \quad 0\lt a\lt \cfrac{1}{8}$
${h}' (a)=-\cfrac{1}{4a^2}+\cfrac{2}{2a} =\cfrac{4a-1}{4a^2} \lt 0 a\in (0,\cfrac{1}{8} )$
$h(a)\searrow \Rightarrow h(a)\gt h(\cfrac{1}{8} )=3-2\ln 2$