抽象函数三题目
$例1、已知函数f(3-2x)的对称中心为(4,2),求f(4x-1)的对称中心为:$
$对于\forall h\in R均有f[3-2(4+h)]+f[3-2(4-h)]=4\Rightarrow f(-5-2h)+f(-3+2h)=4$
$\Rightarrow f(x)关于(-5,2)对称;设f(4x-1)的对称中心为(a,b),f[4(a+x)-1]+f[4(a-x)-1]=2b $
$\Rightarrow \begin{cases} 2b=4\\ 4(a+x)-1+4(a-x)-1=-5\times 2\end{cases}\Rightarrow \begin{cases} a=-1\\b=2\end{cases}$
$例2、已知函数f(2x-1)关于x=2轴对称,求f(x+1)的对称轴:$
$例3、已知x\in \mathsf{R} ,y=3f(-2x+4)+1为奇函数,则函数y=2f(3x+1)+4的对称中心为$
$\because x=0,y=0\Rightarrow 3f(-2\cdot 0+4)+1=0\Rightarrow f(4)=-\cfrac{1}{3} $
$y=2f(4)+4=-\cfrac{1}{3} \times 2+4=\cfrac{10}{3} {\color{Red} \because } 3x+1=4\Rightarrow x=1$
$(1,\cfrac{10}{3} )$
数列题目66
${\color{Red} a_n=2n+3}{\color{Red}\qquad \therefore } \Rightarrow $
$b_n=\begin{cases} a_n-6=2n-3,\quad n为奇数时\\2a_n=4n+6,\qquad n为偶数时 \end{cases}$
$当n为奇数时,T_n=(-1+14)+(3+22)+(7+30)+\dots +(2n-7+4n+2)+2n-3$
$=\cfrac{\cfrac{n+1}{2}(-1+2n-3) }{2} +\cfrac{\cfrac{n-1}{2}(14+4n+2) }{2}=\cfrac{3n^2+5n-10}{2}$
$当n\gt 5时,T_n-S_n=\cfrac{3n^2+5n-10}{2}-(n^2+4n)= \cfrac{n^2-3n-10}{2}=\cfrac{(n-5)(n+2)}{2} \gt 0 $
$当n为偶数时,T_n=(-1+14)+(3+22)+(7+30)+\dots +(2n-5+4n+6)$
$=\cfrac{\cfrac{n}{2}(-1+2n-5) }{2} +\cfrac{\cfrac{n}{2}(14+4n+6) }{2}=\cfrac{3n^2+7n}{2}$
$当n\gt 5时,T_n-S_n=\cfrac{3n^2+7n}{2}-(n^2+4n)=\cfrac{n(n-1)}{2}\gt 0$
$例4、若函数f(x+2)为偶数,y=g(x+1)-5为奇数,且f(2-x)+g(x)=2,则f(2023)=$
$f(x)关于x=2对称,g(x)的对称中心为(1,5)\Rightarrow g(x)+g(2-x)=10$
${\color{Orange} \because \quad } f(2-x)+g(x)=2\Rightarrow f(x)+g(2-x)=2$
$例5、已知f(x)是二次函数,f(-2)=0,且有2x\le f(x)\le \cfrac{x^2+4}{2},则f(10)=$
$设f(x)=(x+2)(ax+b),y=2x与y=\cfrac{x^2+4}{2}相交于(2,4)$
${f}' (x)=ax+b+a(x+2),三个相交并相切于(2,4),\Rightarrow f(2)=4,{f}' (2)=2$
$2a+b=1,6a+b=2,a=0.25,b=0.5$
$例6、已知x^2+y^2=6,那么3x+4y的最大值是$
可用三角变换,也可构造向量,柯西不等式
$例7、若关于x的方程\cfrac{x}{e^x} +\cfrac{e^x}{x-e^x} +m=0 有三个不相等的实数解x_1,x_2,x_3,$
$且 x_1\lt 0\lt x_2\lt x_3,其中 m\in R,则$
$(\cfrac{x_1}{e^{x_1}}-1 )^2(\cfrac{x_2}{e^{x_2}}-1 )(\cfrac{x_3}{e^{x_3}}-1 )=(\qquad)$
$提示:\cfrac{x}{e^x}-1 +\cfrac{1}{\cfrac{x}{e^x}-1}+m+1=0$
$令f(x)=\cfrac{x}{e^x}-1 ,f(x)+\cfrac{1}{f(x)}+m+1=0$
$f(x)\le \cfrac{1}{e}-1,去分母\Rightarrow f^2(x) +(m+1)f(x)+1=0$
$换元令f(x)=t,t^2+(m+1)t+1=0,t_1+t_2=-m-1,t_1t_2=1$
$例8.\alpha ,\beta 为锐角,且\cos (\alpha +\beta )=\cfrac{\sin \alpha }{\sin \beta } ,则\tan \alpha的最大值(\quad)$
$A.\cfrac{\sqrt{2} }{4} \qquad B.\cfrac{\sqrt{3} }{3} \qquad C.1\qquad D.\sqrt{2} $
$要奔着用\tan \beta 来表示 \tan \alpha$
$\tan \alpha \cfrac{1}{\sin \beta } =\cos \beta -\tan \alpha \sin \beta \Rightarrow \tan \alpha =\cfrac{\sin \beta \cos \beta }{1+\sin^2 \beta }$
$例9.若x^2+y^2=1,则\cfrac{y-2}{x+1} 的最大值为(\quad -\cfrac{3}{4} \quad )$
$例10.已知单位向量\vec{e_1} 与\vec{e_2}的夹角为\alpha ,且\cos \alpha =\cfrac{1}{3}, $
$向量\vec{a}=3\vec{e_1}-2 \vec{e_2}与\vec{b} =3\vec{e_1}- \vec{e_2}的夹角为\beta ,则\cos \beta 为$
$例11.在\triangle ABC满足b-2a+4a\sin ^2\cfrac{A+B}{2} =0, 下列结论错误的是(\qquad)$
$A.角C是钝角 \qquad B. a^2+2b^2-c^2=0 \qquad C.\tan B的最小值为\cfrac{\sqrt{3} }{`3} \qquad D.3\tan A+\tan C=0$
$解:b-2a+4a\cos^2 \cfrac{A+B}{2}=0\Rightarrow b-2a+4a\cos^2\cfrac{C}{2}\Rightarrow \cos C=-\cfrac{b}{2a},A正确。$
$\cos C=-\cfrac{b}{2a}=\cfrac{a^2+b^2-c^2}{2ab}\Rightarrow -b^2=a^2+b^2-c^2,B正确。$
$\cfrac{\tan A}{\tan C}=\cfrac{\sin A \cos C}{\sin C \cos A}=\cfrac{a}{c}\cdot \cfrac{(a^2+b^2-c^2)\cdot 2bc}{2ab\cdot (b^2+c^2-a^2)}=\cfrac{-b^2}{3b^2}=-\cfrac{1}{3}\quad \therefore $ D is rihgt
$\tan B=-\cfrac{\tan A+\tan C}{1-\tan A\tan C}=-\cfrac{\tan A-3\tan A}{1-3\tan A\tan A}=\cfrac{2\tan A}{1+3\tan^2 A}=\cfrac{2}{\cfrac{1}{\tan A}+3\tan A}\le \cfrac{2}{2\sqrt{3}}$
$例12.已知实数x,y,z均小于1,且满足e^x-e^{\log_{2}{3} }=e\cdot (x-\log_{2}{3}),$
$e^y-e^{\log_{3}{5} }=e\cdot (y-\log_{3}{5}),e^z-e^{\log_{5}{8} }=e\cdot (z-\log_{5}{8}),则x,y,z的大小关系是:$
$解:{\color{Purple} \Leftrightarrow e ^x-ex=e^{ \log_{2}{3}}-e\log_{2}{3} } $
$e ^y-ey=e^{ \log_{3}{5}}-e\log_{3}{5} ;$
$e ^z-ez=e^{ \log_{5}{8}}-e\log_{5}{8} ;$
$构造函数f(x)=e^t-et,t\in (-\infty,1)$
${\color{Red} \Rightarrow f(x)=f(\log_{2 }{3}); }$
${\color{Purple} \Rightarrow f(y)=f(\log_{3}{5}) }$
${\color{Red} \Rightarrow f(z)=f(\log_{5 }{8}); }$
$\because x,y,z\lt 1,而\log_{2}{3},\log_{3}{5} ,\log_{5}{8} \gt 1,$
$所以x\ne \log_{2}{3},y\ne \log_{3}{5} ,z\ne \log_{5}{8}$
${{\color{Red}\because \quad } \color{Green} \log_{2}{3}\gt\log_{3}{5} \gt \log_{5}{8},此处省去无数过程}$
$对f(x)容易得到它在x\lt 1时,单调递减,x\gt 1时单调递增。{\color{Red} \Rightarrow}x\lt y\lt z$
${\color{Red} \log_{2}{3}} =\log_{2}{\sqrt{9}}\gt \log_2{\sqrt{8}}=\log_2{2^{\frac{3}{2} }}={\color{Red} \cfrac{3}{2}} =\log_{3}{3^{\frac{3}{2}}} =\log_{3}{\sqrt{27}}\gt \log_{3}{\sqrt{25} } ={\color{Red} \log_{3}{5} }$
$ \log_{3}{5} =\log_{3}{5^{\frac{3}{3}}}=\log_{3}{125^{\frac{1}{3} }}\gt \log_{3}{81^{\frac{1}{3} }}=\cfrac{4}{3}=\log_{5}{5^{\frac{4}{3} }}=\log_{5}{625^{\frac{1}{3} }} \gt \log_{5}{512^{\frac{1}{3} }}=\log_{5}{8}$
$例13.在\triangle ABC中,角A,B,C所对三边为a,b,c,且外接圆半径为R=5,则\cfrac{abc}{a^2+b^2+2c^2}的最大值为:$
$解:c=10\sin C,c^2=a^2+b^2-2ab\cos C\Rightarrow \cfrac{abc}{a^2+b^2+2c^2}=\cfrac{10ab\sin C}{a^2+b^2+2(a^2+b^2-2ab\cos C)}$
$=\cfrac{10ab\sin C}{3a^2+3b^2-4ab\cos C}\le \cfrac{10ab\sin C}{6ab-4ab\cos C}=\cfrac{5ab\sin C}{3ab-2ab\cos C}=\cfrac{5\sin C}{3-2\cos C}$
$C\in (0,\pi),\qquad \therefore\quad \cfrac{5\sin C}{3-2\cos C}=\cfrac{10\sin \cfrac{C}{2}\cos\cfrac{C}{2}}{5\sin^2\cfrac{C}{2}+\cos^2\cfrac{C}{2}}=\cfrac{10\tan\cfrac{C}{2}}{5\tan^2\cfrac{C}{2}+1}=\cfrac{10}{5\tan \cfrac{C}{2}+\cfrac{1}{\tan \cfrac{C}{2}}}$
$原式\le \cfrac{10}{2\sqrt{5}}=\sqrt{5},当且仅当5\tan \cfrac{C}{2}=\cfrac{1}{\tan \cfrac{C}{2}},\tan \cfrac{C}{2}=\cfrac{\sqrt{5}}{5}时取=$

